Algorithms for hand feature extraction used in gesture recognition systems have some problems such as unnecessary information gathering. This paper proposes a novel method for feature extraction in gesture recognition systems based on the Local Contour Sequence (LCS). It is called the Convexity Local Contour Sequence (CLCS) and represents the hand shape only with the most significant information. This generates a smaller output result, but capable to model an entire dynamic gesture. It is used to classify dynamic gestures with an Elman Recurrent Network and Hidden Markov Model and presents a better result compared to regular LCS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.