We propose a method for constructing optimal causal approximate inverse for discrete-time single-input single-output (SISO) causal periodic filters in the presence of measurement noise. The analysis is based on block signals and multi-input multi-output (MIMO) time-invariant models for periodic filters. The objective function to be minimized is the asymptotic block mean square error. The optimization problem is formulated in terms of transfer matrices as an optimal model-matching problem with nonsquare model and plant. Based on an inner-outer factorization on the transpose of the plant rational matrix, it is shown that the problem can be further reduced to one with a lower dimensional square model and plant, which is then solved in the time-domain, and a closed-form solution is obtained. A lower bound on the objective function is given. It is shown that the lower bound can be asymptotically achieved as the order of the optimal transfer matrix increases. The proposed method is extended to MIMO periodic systems. Numerical examples are used to illustrate the performance of the proposed approximate inverse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.