The material and electrical properties of the CNT single vias and array vias grown by microwave plasma-enhanced chemical vapor deposition were investigated.The diameters of multiwall carbon nanotubes (MWNTs) grown on the bottom electrode of Ta decrease with increasing pretreatment power and substrate temperature while the effects of the growth power and methane flow ratio are insignificant The decrease of CNT diameters leads to the decrease of the CNT via diode devices. The increase of growth power enhances the CNT graphitization degree and thue the conductivity of CNT via diode devices. In the same via region, the MWNT diode resistances of the array vias are lower than those of the single vias. The MWNT diode resistances on the bottom electrode of titanium are lower than those on the bottom electrode of tantalum. It may be attributed to the smaller tube diameters on the bottom electrode of Ti and the work function difference between Ta and Ti films with respect to the work function of CNTs.
The temporal saturation effects of the critical dimensions of nanoscale contact holes are investigated by a two-dimensional reaction–diffusion simulator for the chemical shrink techniques of nanolithography. Models included with the simulator are the crosslinking reaction of water-soluble polymers and crosslinkers, the diffusion of photoacids, and the inactivation of photoacids. Within the the statistical errors of the experimental data, the simulation critical dimensions agree with the experiment for baking temperatures over 105°C and for all baking times. It is found that the temporal saturation of the contact holes' critical dimensions can be explained by the photoacid inactivating reaction included in the simulator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.