In [6], we distributed training instances over a single-channel broadcast communication model to speed up execution of the back-propagation learning algorithm for classification problems. In this paper, we extend this concept to control problems, where the output is not necessarily 0 or 1, but ranges over an interval. We first propose a modified back-propagation learning algorithm that incrementally decreases the error threshold by half in order to process training instances with large weight changes as quickly as possible. This modified back-propagation learning algorithm is then parallelized using the single-channel broadcast communication model to n processors, where n is the number of training instances. Finally, the parallel back-propagation learning algorithm is modified for execution on a bounded number of processors to cope with real-world conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.