BackgroundThe online health care community is not just a place for the public to share physician reviews or medical knowledge, but also a physician-patient communication platform. The medical resources of developing countries are relatively inadequate, and the online health care community is a potential solution to alleviate the phenomenon of long hospital queues and the lack of medical resources in rural areas. However, the success of the online health care community depends on online contributions by physicians.ObjectiveThe aim of this study is to examine the effect of incentive mechanisms on physician’s online contribution behavior in the online health community. We addressed the following questions: (1) from which specialty area are physicians more likely to participate in online health care community activities, (2) what are the factors affecting physician online contributions, and (3) do incentive mechanisms, including psychological and material rewards, result in differences of physician online contributions?MethodsWe designed a longitudinal study involving a data sample in three waves. All data were collected from the Good Doctor website, which is the largest online health care community in China. We first used descriptive statistics to investigate the physician online contribution behavior in its entirety. Then multiple linear and quadratic regression models were applied to verify the causal relationship between rewards and physician online contribution.ResultsOur sample included 40,300 physicians from 3607 different hospitals, 10 different major specialty areas, and 31 different provinces or municipalities. Based on the multiple quadratic regression model, we found that the coefficients of the control variables, past physician online contributions, doctor review rating, clinic title, hospital level, and city level, were .415, .189, –.099, –.106, and –.143, respectively. For the psychological (or material) rewards, the standardized coefficient of the main effect was 0.261 (or 0.688) and the standardized coefficient of the quadratic effect was –0.015 (or –0.049). All estimates were statistically significant (P<.001).ConclusionsPhysicians with more past physician online contribution, with higher review ratings, coming from lower level clinics, not coming from tertiary hospitals, and not coming from big cities were more willing to participate in online health care community activities. To promote physician online contribution, it is necessary to establish an appropriate incentive mechanism including psychological and material rewards. Finally, our findings suggest two guidelines for designing a useful incentive mechanism to facilitate physician online contribution. First, material reward is more useful than psychological reward. Second, as indicated by the concave-down-increasing causal relationship between rewards and physician online contribution, although an appropriate reward is effective in encouraging willingness on the part of physicians to contribute to the online health care community, the effect o...
Purpose Electronic word-of-mouth (eWOM) is very important for consumer decision making; previous international product diffusion studies have investigated eWOM and cultural factors that influence consumers’ acceptance of new products, but they have not adequately compared the differences in these factors between the USA and China. Therefore, the purpose of this paper is to compare the impact of eWOM on consumer choices in China and the USA. The authors addressed the following questions: What are the cross-cultural differences in consumers’ eWOM behavior between the USA and China: Which genres of Hollywood movies have better cross-culture predictability in terms of box office performance; and What factors affect the success of Hollywood movies in entering the Chinese market? Design/methodology/approach Real eWOM data were collected from two online movie review websites, IMDb.com (the USA) and Douban.com (China), from January 2010 to December 2015. In addition, box office revenue information was collected from BoxOfficeMojo.com. The authors used an independent sample t-test to check whether the differences in consumers’ eWOM behavior between China and the USA and different types of movie lead to cultural discount differences. Furthermore, a log-linear regression model is used to examine which factors influence the commercial success of new movies. Findings There are specific similarities and differences between the American and Chinese movie markets. First, the results show that American consumers are more engaged in online review systems and tend to submit extreme reviews, but Chinese consumers tend to submit moderate reviews on movies, and the eWOM variance there is smaller than in the USA. Second, genres are useful variables as indicators of movie content; the genres of comedy and drama are not popular in the Chinese market. Finally, eWOM variance has a positive impact on box office in China, but eWOM variance has no impact on the US box office. In addition, the interactive effect of the average rating and eWOM variance on sales is positively significant in China. Importantly, the one-star reviews have a negative impact on the Chinese box office, but it has no impact on US box office. Practical implications Understanding how cultural factors influence consumer eWOM communication will help managers to better apply this new marketing communication tool to create more aggressive and targeted promotional plans. Marketers may use eWOM behavior to better respond to and target consumers to overcome barriers to the selection of their products by consumers. Therefore, more effective management of eWOM can improve the acceptance of and preference for products in different cultural consumer groups. Originality/value This study expands the existing body of knowledge on eWOM and international marketing literature. Clearly, culture is an important determinant of eWOM’s impact on sales. In addition, it provides strategic direction and practical implications for eWOM communication management in cross-cultural settings.
Background Patients attempt to make appropriate decisions based on their own knowledge when choosing a doctor. In this process, the first question usually faced is that of how to obtain useful and relevant information. This study investigated the types of information sources that are used widely by patients in choosing a doctor and identified ways in which the preferred sources differ in various situations. Objective This study aims to address the following questions: (1) What is the proportion in which each of the various information sources is used? (2) How does the information source preferred by patients in choosing a doctor change when there is a difference in the difficulty of medical decision making, in the level of the hospital, or in a rural versus urban situation? (3) How do information sources used by patients differ when they choose doctors with different specialties? Methods This study overcomes a major limitation in the use of the survey technique by employing data from the Good Doctor website, which is now China's leading online health care community, data which are objective and can be obtained relatively easily and frequently. Multinomial logistic regression models were applied to examine whether the proportion of use of these information sources changes in different situations. We then used visual analysis to explore the question of which type of information source patients prefer to use when they seek medical assistance from doctors with different specialties. Results The 3 main information sources were online reviews (OR), family and friend recommendations (FR), and doctor recommendations (DR), with proportions of use of 32.93% (559,345/1,698,666), 23.68% (402,322/1,698,666), and 17.48% (296,912/1,698,666), respectively. Difficulty in medical decision making, the hospital level, and rural-urban differences were significantly associated with patients’ preferred information sources for choosing doctors. Further, the sources of information that patients prefer to use were found to vary when they looked for doctors with different medical specialties. Conclusions Patients are less likely to use online reviews when medical decisions are more difficult or when the provider is not a tertiary hospital, the former situation leading to a greater use of online reviews and the latter to a greater use of family and friend recommendations. In addition, patients in large cities are more likely to use information from online reviews than family and friend recommendations. Among different medical specialties, for those in which personal privacy is a concern, online reviews are the most common source. For those related to children, patients are more likely to refer to family and friend recommendations, and for those related to surgery, they value doctor recommendations more highly. Our results can not only contribute to aiding government efforts to further promote the dissemination of health care information but may also help health care industry managers develop better marketing strategies.
Background Online health care services are a possible solution to alleviate the lack of medical resources in rural areas, and further understanding of the related medical service pricing system would contribute to improvement of the online health care community (OHC). Although many studies have investigated the OHC, the impact of physicians’ reputations and wage levels on consulting prices in the OHC has rarely been discussed in the literature. Objective This study was designed to explore the determinants of consulting prices in the OHC. We addressed the following questions: (1) Are the prices of online health consultation services affected by wage levels at the doctor’s location? (2) How does a physician’s online and offline reputation affect their consulting prices? Methods Employing a large-scale sample of 16,008 doctors in China, we first used descriptive statistics to investigate the determinants of consulting prices in their entirety. Hierarchical linear modeling was then used to investigate the determinants of consulting prices in the OHC. Results The empirical results led to the conclusion that if doctors have more elevated clinic titles, work in higher-level hospitals, have better online reputations, and/or have made more past sales, their consulting prices will be higher. Additionally, the wage level in the city in which the doctor is working determines their opportunity cost and therefore also affects consulting prices. Conclusions The findings indicate that the characteristics of the doctor, the doctor’s online reputation, and past sales affect the consulting price. In particular, the wage level in the city affects the price of the consultation. These findings highlight that the OHC is important because it can indeed break through geographical restrictions and give rural residents the opportunity to obtain medical service from doctors in big cities. However, doctors from cities often charge higher fees because of their higher opportunity cost. The results reveal that one of the most important functions of the OHC is to reduce the medical disparity between urban and rural areas; however, planners appear to ignore the possibility that rural residents with lower incomes may not be able to afford such high medical consultation costs. Therefore, the government should consider providing incentives to encourage urban doctors to provide discounts to rural residents or directly offer appropriate subsidies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.