In this work, one-step glancing angle deposition is utilized to fabricate gold and silver nanohelix arrays (NHAs) on smooth glass substrates. During deposition, the substrate is cooled using liquid nitrogen and rotated with a tunable spin rate. The substrate spin rate is tuned to match the deposition rate to yield a spiral-like helix structure. The morphologies and optical properties of spiral-like Ag and Au NHAs are measured and compared. The polarization-dependent reflectance of Au NHA leads to a strong g-factor. The three-dimensional nanohelical structures are demonstrated to be a highly sensitive surface-enhanced Raman scattering (SERS) substrate.
In this work, three slanted silver nanorod arrays (NRAs) with different thicknesses are fabricated using the glancing angle deposition method. Each silver NRA in the Kretschmann configuration is arranged to form a prism/NRA/air system. Attenuated total reflection occurs over the visible wavelengths and wide incident angles of both s- and p-polarization states. The extinctance is inversely proportional to the thickness of the Ag NRA. The thinnest NRA, with a thickness of 169 nm, exhibits strong extinctance of more than 80% over the visible wavelengths. The associated forward scatterings from the three NRAs are measured and compared under illumination with a laser beam with a wavelength of 632.8 nm.
The substrate cooling technique was introduced in glancing angle deposition to grow a slanted silver nanorod array (NRA) by introducing liquid nitrogen to flow under the substrate. The morphologies of Ag NRAs deposited with cooling and without cooling are compared in this paper. During deposition, the temperature on the backside of substrate was kept at -140°C. A three-sectional zig-zag nanostructured array (ZNA) was then deposited under the same cooling condition. The polarization dependent transmittance and reflectance spectra of both NRA and ZNA were also measured and compared in this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.