Graph machine learning (GML) is receiving growing interest within the pharmaceutical and biotechnology industries for its ability to model biomolecular structures, the functional relationships between them, and integrate multi-omic datasets — amongst other data types. Herein, we present a multidisciplinary academic-industrial review of the topic within the context of drug discovery and development. After introducing key terms and modelling approaches, we move chronologically through the drug development pipeline to identify and summarize work incorporating: target identification, design of small molecules and biologics, and drug repurposing. Whilst the field is still emerging, key milestones including repurposed drugs entering in vivo studies, suggest GML will become a modelling framework of choice within biomedical machine learning.
Graphics Processing Units (GPU) are application specific accelerators which provide high performance to cost ratio and are widely available and used, hence places them as a ubiquitous accelerator. A computing paradigm based on the same is the general purpose computing on the GPU (GPGPU) model. The GPU due to its graphics lineage is better suited for the data-parallel, data-regular algorithms. The hardware architecture of the GPU is not suitable for the data parallel but data irregular algorithms such as graph connected components and list ranking. In this paper, we present results that show how to use GPUs efficiently for graph algorithms which are known to have irregular data access patterns. We consider two fundamental graph problems: finding the connected components and finding a spanning tree. These two problems find applications in several graph theoretical problems. In this paper we arrive at efficient GPU implementations for the above two problems. The algorithms focus on minimising irregularity at both algorithmic and implementation level. Our implementation achieves a speedup of 11-16 times over a corresponding best sequential implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.