Continuous demand for an increase in food production due to climate change and a steady rise in world population requires stress-resilient, sustainable agriculture. Overuse of chemical fertilizers and monoculture farming to achieve this goal deteriorated soil health and negatively affected its microbiome. The rhizosphere microbiome of a plant plays a significant role in its growth and development and promotes the plant’s overall health through nutrient uptake/availability, stress tolerance, and biocontrol activity. The Intermountain West (IW) region of the US is rich in native plants recommended for low water use landscaping because of their drought tolerance. The rhizosphere microbiome of these native plants is an excellent resource for plant growth-promoting rhizobacteria (PGPR) to use these microbes as biofertilizers and biostimulants to enhance food production, mitigate environmental stresses and an alternative for chemical fertilizer, and improve soil health. Here, we isolated, purified, identified, and characterized 64 bacterial isolates from a native plant, Ceanothus velutinus, commonly known as snowbrush ceanothus, from the natural habitat and the greenhouse-grown native soil-treated snowbrush ceanothus plants. We also conducted a microbial diversity analysis of the rhizosphere of greenhouse-grown native soil-treated and untreated plants (control). Twenty-seven of the 64 isolates were from the rhizosphere of the native region, and 36 were from the greenhouse-grown native soil-treated plants. These isolates were also tested for plant growth-promoting (PGP) traits such as their ability to produce catalase, siderophore, and indole acetic acid, fix atmospheric nitrogen and solubilize phosphate. Thirteen bacterial isolates tested positive for all five plant growth-promoting abilities and belonged to the genera Pantoea, Pseudomonas, Bacillus, and Ancylobacter. Besides, there are isolates belonging to the genus Streptomyces, Bacillus, Peribacillus, Variovorax, Xenophilus, Brevundimonas, and Priestia, which exhibit at least one of the plant growth-promoting activities. This initial screen provided a list of potential PGPR to test for plant health improvement on model and crop plants. Most of the bacterial isolates in this study have a great potential to become biofertilizers and bio-stimulants.
An organoid is an in-vitro platform that recreates 3D multicellular aggerates to form tissues that fabricate the human cellular environment in the lab and imitate the functionalities of the specific organ or disease. Organoids effectively overcomes the gaps in research between 2D cell line and in-vivo models. For organoid development, both pluripotent stem cells and embryonic stem cells can be utilized, and recently Patient-Derived Organoids (PDO) was developed that overcome the limitations caused by using other cell lines. With the development of many advanced technologies in the field of research, the organoid evolution also progressed slowly into the development of patient-specific organ structures. Since tumor organoids were heterogeneous as well as patient-specific, it has many advantages that aid cancer therapy effectively. Apart from cancer treatment, organoids have a variety of applications in cancer research, the study of tissue-specific models, and also in the analysis of the relationship between tissue-specific cancer with various pathogens. Thus, the development of organoids in an effective way can pave the way for various biomedical applications. This chapter focuses on the trends in the journey of organoid research and the latest technologies developed specifically for organoids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.