OBJECTIVE Carotid intervention is safe and effective in stroke prevention in appropriately selected patients. Despite minimal neurologic complications, procedure-related subclinical microemboli are common and their cognitive effects are largely unknown. In this prospective longitudinal study, we sought to determine long-term cognitive effects of embolic infarcts. METHODS 119 patients including 46% symptomatic patients who underwent carotid revascularization were recruited. Neuropsychological testing was administered preoperatively and at 1, 6, and 12 months postoperatively. Rey Auditory Learning Test (RAVLT) was the primary cognitive measure with parallel forms to avoid practice effort. All patients also received 3T brain MRIs with a diffusion-weighted sequence (DWI) preoperatively and within 48 hours postoperatively to identify procedure-related new embolic lesions. Each DWI lesion was manually traced and input into a neuroimaging program to define volume. Embolic infarct volumes were correlated with cognitive measures. Regression models were used to identify relationships between infarct volumes and cognitive measures. RESULTS A total 587 DWI lesions were identified on 3T MRI in 81.7% of CAS and 36.4% of CEA patients with a total volume of 29327mm3. Among them, 54 DWI lesions were found in CEA patients and 533 in the CAS patients. Four patients had transient postoperative neurologic symptoms and one had a stroke. CAS was an independent predictor of embolic infarct (OR: 6.6 [2.1–20.4], p<.01) and infarct volume (P=.004). Diabetes and contralateral carotid severe stenosis/occlusion had a trend of positive association with infarct volume, while systolic blood pressure more or equal to 140mmHg had a negative association (P=.1, .09, and .1, respectively). There was a trend of improved RAVLT scores overall following carotid revascularization. Significantly higher infarct volumes were observed among those with RAVLT decline. Within the CAS cohort, infarct volume was negatively correlated with short and long-term RAVLT changes (P<0.05). CONCLUSIONS Cognitive assessment of procedure-related subclinical microemboli is challenging. Volumes of embolic infarct correlates with long-term cognitive changes, suggesting that micro-embolization should be considered as a surrogate measure for carotid disease management.
Background: Precise targeting of brain functional networks is believed critical for treatment efficacy of rTMS (repetitive pulse transcranial magnetic stimulation) in treatment resistant major depression. Objective: To use imaging data from a "failed" clinical trial of rTMS in Veterans to test whether treatment response was associated with rTMS coil location in active but not sham stimulation, and compare fMRI functional connectivity between those stimulation locations. Methods: An imaging substudy of 49 Veterans (mean age, 56 years; range, 27e78 years; 39 male) from a randomized, sham-controlled, double-blinded clinical trial of rTMS treatment, grouping participants by clinical response, followed by group comparisons of treatment locations identified by individualized fiducial markers on structural MRI and resting state fMRI derived networks. Results: The average stimulation location for responders versus nonresponders differed in the active but not in the sham condition (P ¼ .02). The average responder location derived from the active condition showed significant negative functional connectivity with the subgenual cingulate (P < .001) while the nonresponder location did not (P ¼ .17), a finding replicated in independent cohorts of 84 depressed and 35 neurotypical participants. The responder and nonresponder stimulation locations evoked different seed based networks (FDR corrected clusters, all P < .03), revealing additional brain regions related to rTMS treatment outcome. Conclusion: These results provide evidence from a randomized controlled trial that clinical response to rTMS is related to accuracy in targeting the region within DLPFC that is negatively correlated with
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.