A novel secure energy aware game theory (SEGaT) method has proposed to have better coordination in wireless sensor actor networks. An actor has a cluster of sensor nodes which is required to perform different action based on the need that emerge in the network individually or sometime with coordination from other actors. The method has different stages for the fulfilment of these actions. Based on energy aware actor selection (EAAS), selection of number of actors and their approach is the initial step followed by the selection of best team of sensors with each actor to carry out the action and lastly the selection of reliable node within that team to finally nail the action into place in the network for its smooth working and minimum compromise in the energy The simulations are done in MATLAB and result of the energy and the packet delivery ratio are compared with game theory (GaT) and real time energy constraint (RTEC) method. The proposed protocol performs better in terms of energy consumption, packet delivery ratio as compared to its competitive protocols.
Major depressive disorder (MDD) is a mood state that is not usually associated with vision problems. Recent research has found that the inhibitory neurotransmitter GABA levels in the occipital brain have dropped. Aim. The aim of the research is to evaluate mental workload by single channel electroencephalogram (EEG) approach through visual-motor activity and comparison of parameter among depressive disorder patient and in control group. Method. Two tests of a visual-motor task similar to reflect drawings were performed in this study to compare the visual information processing of patients with depression to that of a placebo group. The current study looks into the accuracy of monitoring cognitive burden with single-channel portable EEG equipment. Results. The alteration of frontal brain movement in reaction to fluctuations in cognitive burden stages generated through various vasomotor function was examined. By applying a computerised oculomotor activity analogous to reflector image diagram, we found that the complexity of the path to be drawn was more important than the real time required accomplishing the job in determining perceived difficulty in depressive disorder patients. The overall perceived difficulty of the exercise is positively linked with EEG activity measured from the motor cortex region at the start of every experiment test. The average rating for task completion for depression patients and in control group observed and no statistical significance association reported between rating scale and time spent on each trial ( p = 1.43 ) for control group while the normalised perceived difficulty rating had 0.512, 0.623, and 0.821 correlations with the length of the pathway, the integer of inclination in the pathway, and the time spent to complete every experiment test, respectively ( p < 0.0001 ) among depression patients. The findings imply that alterations in comparative cognitive burden levels during an oculomotor activity considerably modify frontal EEG spectrum. Conclusion. Patients with depression perceived the optical illusion in the arrays as weaker, resulting in a little bigger disparity than individuals who were not diagnosed with depression. This discovery provided light on the prospect of adopting a user-friendly mobile EEG technology to assess mental workload in everyday life.
The novel Coronavirus pathogen Covid-19 is a cause of concern across the world as the human-to-human infection caused by it is spreading at a fast pace. The virus that first manifested in Wuhan, China has travelled across continents. The increase in number of deaths in Italy, Iran, USA, and other countries has alarmed both the developed and developing countries. Scientists are working hard to develop a vaccine against the virus, but until now no breakthrough has been achieved. India, the second most populated country in the world, is working hard in all dimensions to stop the spread of community infection.Health care facilities are being updated; medical and paramedical staffs are getting trained, and many agencies are raising awareness on the issues related to this virus and its transmission. The administration is leaving no stone unturned to prepare the country to mitigate the adverse effects. However, as the number of infected patients, and those getting cured is changing differently in different states everyday it is difficult to predict the spread of the virus and its fate in Indian context. Different states have adopted measures to stop the community spread. Considering the vast size of the country, the population size and other socio-economic conditions of the states, a single uniform policy may not work to contain the disease. In this paper, we discuss a predictive mathematical model that can give us some idea of the fate of the virus, an indicative data and future projections to understand the further course this pandemic can take. The data can be used by the health care agencies, the Government Organizations and the Planning Commission to make suitable arrangements to
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.