In this paper, we solve the [Formula: see text]-Generalized KdV equation by local fractional homotopy analysis method (LFHAM). Further, we analyze the approximate solution in the form of non-differentiable generalized functions defined on Cantor sets. Some examples and special cases of the main results are also discussed.
In this paper, we solve the local fractional generalized Fokker–Planck equation. To solve the problem, local fractional Mohand transform with Adomian decomposition method is introduced due to its simple approach and less computational work. Furthermore, for the applicability of the technique, we illustrate some examples and their exact or approximate solutions with their graphical representations.
This research work is dedicated to solving the n-generalized Korteweg–de Vries (KdV) equation in a fractional sense. The method is a combination of the Sumudu transform and the Adomian decomposition method. This method has significant advantages for solving differential equations that are both linear and nonlinear. It is easy to find the solutions to fractional-order PDEs with less computing labor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.