Epilepsy is one of the most occurring neurological disease globally emerged back in 4000 BC. It is affecting around 50 million people of all ages these days. The trait of this disease is recurrent seizures. In the past few decades, the treatments available for seizure control have improved a lot with the advancements in the field of medical science and technology. Electroencephalogram (EEG) is a widely used technique for monitoring the brain activity and widely popular for seizure region detection. It is performed before surgery and also to predict seizure at the time operation which is useful in neuro stimulation device. But in most of cases visual examination is done by neurologist in order to detect and classify patterns of the disease but this requires a lot of pre-domain knowledge and experience. This all in turns put a pressure on neurosurgeons and leads to time wastage and also reduce their accuracy and efficiency. There is a need of some automated systems in arena of information technology like use of neural networks in deep learning which can assist neurologists. In the present paper, a model is proposed to give an accuracy of 98.33% which can be used for development of automated systems. The developed system will significantly help neurologists in their performance.
Introduction: The major area of work of pathologists is concerned with detecting the diseases and helping the patients in their healthcare and well-being. The present method used by pathologists for this purpose is manually viewing the slides using a microscope and other instruments. But this method suffers from a lot of problems, like there is no standard way of diagnosing, human errors and it puts a heavy load on the laboratory men to diagnose such a large number of slides daily. Method: The slide viewing method is widely used and converted into digital form to produce high resolution images. This enables the area of deep learning and machine learning to deep dive into this field of medical sciences. In the present study, a neural based network has been proposed for classification of blood cells images into various categories. When input image is passed through the proposed architecture and all the hyper parameters and dropout ratio values are used in accordance with proposed algorithm, then model classifies the blood images with an accuracy of 95.24%. Result: After training the models on 20 epochs. The plots of training accuracy, testing accuracy and corresponding training loss, testing loss for proposed model is plotted using matplotlib and trends. Discussion: The performance of proposed model is better than existing standard architectures and other work done by various researchers. Thus, the proposed model enables the development of pathological system which will reduce human errors and daily load on laboratory men. This can also in turn help pathologists in carrying out their work more efficiently and effectively. Conclusion: In the present study, a neural based network has been proposed for classification of blood cells images into various categories. These categories have significance in the medical sciences. When input image is passed through the proposed architecture and all the hyper parameters and dropout ratio values are used in accordance with proposed algorithm, then model classifies the images with an accuracy of 95.24%. This accuracy is better than standard architectures.. Further it can be seen that the proposed neural network performs better than present related works carried by various researchers.
Timely diagnosis is important for saving the life of epileptic patients. In past few years, a lot of treatment are available for epilepsy. These treatments involve use of medicines. But these are not effective in controlling frequency of seizure. There is need of removal of affected region using surgery. Electroencephalogram (EEG) is a widely used technique for monitoring the brain activity and widely popular for seizure region detection. It is used before surgery for locating affected region. This manual process using EEG graphs is time consuming and requires deep expertise. In the present paper, a model has been proposed that preserves the true nature of EEG signal in form of textual one dimensional vector. The proposed model achieves a state of art performance for Bonn University dataset giving an average sensitivity, specificity of 81% and 81.4% respectively for classification among all five classes. Also for binary classification achieving 99.9%, 99.5% score value for specificity and sensitivity instead of 2D models used by other researchers. Thus developed system will significantly help neurosurgeons in increasing their performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.