We here present a relativistic model for a spherically symmetric anisotropic fluid to study the various factors of physical and thermal phenomenon during the evolution of a collapsing star dissipating energy in the form of radial heat flow. We also proposed a table of some new parametric class of solutions which will be useful for constructing the new compact star models. The constructed algorithm obeys all the relevant requirements of a realistic model and matched with Vaidya exterior metric over the boundary. At the initial stage the interior solutions represent a static configuration of perfect fluid which then gradually starts evolving into radiating collapse. The apparent luminosity as observed by the distant observer at rest at infinity and the effective surface temperature are zero in remote past at the instant when collapse begins and at the stage when collapsing configuration reaches the horizon of the black hole.
Paper presents the development of the software reliability growth model under multi-up gradation process. In up gradation process new version of the software is released in the market with some new features. The process is repeated and referred to as multi-up gradation. The model has been developed using logistic test effort function. logistic distribution described increasing/decreasing phenomenon fairly. Three generations of the model have been developed and compared using statistical tools R2 and MSE. Results validate good fitting of the third generation to a given dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.