An increase in use of web produces large content of information about products. Online reviews are used to make decision by peoples. Opinion mining is vast research area in which different types of reviews are analyzed. Several issues are existing in this area. Domain adaptation is emerging issue in opinion mining. Labling of data for every domain is time consuming and costly task. Hence the need arises for model that train one domain and applied it on other domain reducing cost aswell as time. This is called domain adaptation which is addressed in this paper. Using maximum entropy and clustering technique source domains data is trained. Trained data from source domain is applied on target data to labeling purpose A result shows moderate accuracy for 5 fold cross validation and combination of source domains for Blitzer et al (2007) multi domain product dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.