In this paper, classification of mental task-root brain-computer interfaces (BCIs) is being investigated. The mental tasks are dominant area of investigations in BCI, which utmost interest as these system can be augmented life of people having severe disabilities. The performance of BCI model primarily depends on the construction of features from brain, electroencephalography (EEG), signal, and the size of feature vector, which are obtained through multiple channels. The availability of training samples to features are minimal for mental task classification. The feature selection is used to increase the ratio for the mental task classification by getting rid of irrelevant and superfluous features. This paper suggests an approach to augment the performance of a learning algorithm for the mental task classification on the utility of power spectral density (PSD) using feature selection. This paper also deals a comparative analysis of multivariate and univariate feature selection for mental task classification. After applying the above stated method, the findings demonstrate substantial improvements in the performance of learning model for mental task classification. Moreover, the efficacy of the proposed approach is endorsed by carrying out a robust ranking algorithm and Friedman's statistical test for finding the best combinations and compare various combinations of PSD and feature selection methods.
This paper presents a novel algorithm (CVSTSCSP) for determining discriminative features from an optimal combination of temporal, spectral and spatial information for motor imagery brain computer interfaces. The proposed method involves four phases. In the first phase, EEG signal is segmented into overlapping time segments and bandpass filtered through frequency filter bank of variable size subbands. In the next phase, features are extracted from the segmented and filtered data using stationary common spatial pattern technique (SCSP) that can handle the non- stationarity and artifacts of EEG signal. The univariate feature selection method is used to obtain a relevant subset of features in the third phase. In the final phase, the classifier is used to build adecision model. In this paper, four univariate feature selection methods such as Euclidean distance, correlation, mutual information and Fisher discriminant ratio and two well-known classifiers (LDA and SVM) are investigated. The proposed method has been validated using the publicly available BCI competition IV dataset Ia and BCI Competition III dataset IVa. Experimental results demonstrate that the proposed method significantly outperforms the existing methods in terms of classification error. A reduction of 76.98%, 75.65%, 73.90% and 72.21% in classification error over both datasets and both classifiers can be observed using the proposed CVSTSCSP method in comparison to CSP, SBCSP, FBCSP and CVSCSP respectively.
In the last few years, many research works have been suggested on Brain-Computer Interface (BCI), which assists severely physically disabled persons to communicate directly with the help of electroencephalogram (EEG) signal, generated by the thought process of the brain. Thought generation inside the brain is a dynamic process, and plenty thoughts occur within a small time window. Thus, there is a need for a BCI device that can distinguish these various ideas simultaneously. In this research work, our previous binary-class mental task classification has been extended to the multi-class mental task problem. The present work proposed a novel feature construction scheme for multi mental task classification. In the proposed method, features are
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.