In 1968 the Food and Drug Administration (FDA) established the Adverse Event Reporting System (AERS) database containing data on adverse events (AEs) reported by patients, health care providers, and other sources through a spontaneous reporting system. FDA uses AERS for monitoring the safety of the drugs on the market after approval. Most statistical methods that are available in the literature to analyze large postmarket drug safety data for identifying drug-event combinations with disproportionately high frequencies are designed to explore signals of a single drug-AE combination, but not signals including a drug class or a group of AEs simultaneously. Those methods are also not designed to control type I error and are subject to high false discovery rates. In this paper, we first briefly review a recently developed method, known as the likelihood ratio test (LRT)-based method, which has been demonstrated to control the family-wise type I error and false discovery rates. By introducing a concept of weight matrix for the drugs (or for AEs), we then extend the LRT method for detecting signals including a class of drugs (or AEs) in addition to detecting signals of single drug (or AE). A simplified Bayesian method is also proposed and compared with LRT method. The proposed methods are applied to study the signal patterns of drug classes, namely, the gadolinium drug class for magnetic resonance imaging (MRI) and statins for hypercholesterolemia, over different time periods, using the datasets with only suspect drugs and with both suspect and concomitant drugs from the AERS database. The signals detected by the statistical methods can be confirmed by signals detected across different databases, existing medical evidence from research or regulatory resources, prospective biological studies, and also through simulation as illustrated in the application.
The data-mining statistical methods used for disproportionality analysis of drug-adverse event combinations from large drug safety databases such as the FDA's Adverse Event Reporting System (FAERS), consisting of spontaneous reports on adverse events for postmarket drugs, are called passive surveillance methods. However, the statistical signal detection methods for longitudinal data, as the data accrue in time, are called active surveillance methods. A review of the most commonly used passive surveillance statistical methods and the relationships among them is presented with unified notations. These methods are applied to the 2006-2012 FAERS data; the number of drug signals of disproportionate rates (SDRs) detected by each of these methods with the common SDRs from all of these methods, for the adverse event myocardial infarction, are given. Finally, there is a brief discussion on the recently developed active surveillance methods.
In recent decades, numerous methods have been developed for data mining of large drug safety databases, such as Food and Drug Administration's (FDA's) Adverse Event Reporting System, where data matrices are formed by drugs such as columns and adverse events as rows. Often, a large number of cells in these data matrices have zero cell counts and some of them are "true zeros" indicating that the drug-adverse event pairs cannot occur, and these zero counts are distinguished from the other zero counts that are modeled zero counts and simply indicate that the drug-adverse event pairs have not occurred yet or have not been reported yet. In this paper, a zero-inflated Poisson model based likelihood ratio test method is proposed to identify drug-adverse event pairs that have disproportionately high reporting rates, which are also called signals. The maximum likelihood estimates of the model parameters of zero-inflated Poisson model based likelihood ratio test are obtained using the expectation and maximization algorithm. The zero-inflated Poisson model based likelihood ratio test is also modified to handle the stratified analyses for binary and categorical covariates (e.g. gender and age) in the data. The proposed zero-inflated Poisson model based likelihood ratio test method is shown to asymptotically control the type I error and false discovery rate, and its finite sample performance for signal detection is evaluated through a simulation study. The simulation results show that the zero-inflated Poisson model based likelihood ratio test method performs similar to Poisson model based likelihood ratio test method when the estimated percentage of true zeros in the database is small. Both the zero-inflated Poisson model based likelihood ratio test and likelihood ratio test methods are applied to six selected drugs, from the 2006 to 2011 Adverse Event Reporting System database, with varying percentages of observed zero-count cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.