Much of the present-day volume of Earth’s continental crust had formed by the end of the Archean Eon, 2.5 billion years ago, through the conversion of basaltic (mafic) crust into sodic granite of tonalite, trondhjemite and granodiorite (TTG) composition. Distinctive chemical signatures in a small proportion of these rocks, the so-called high-pressure TTG, are interpreted to indicate partial melting of hydrated crust at pressures above 1.5 GPa (>50 km depth), pressures typically not reached in post-Archean continental crust. These interpretations significantly influence views on early crustal evolution and the onset of plate tectonics. Here we show that high-pressure TTG did not form through melting of crust, but through fractionation of melts derived from metasomatically enriched lithospheric mantle. Although the remaining, and dominant, group of Archean TTG did form through melting of hydrated mafic crust, there is no evidence that this occurred at depths significantly greater than the ~40 km average thickness of modern continental crust.
An W-E belt of maximum bulk horizontal shortening (the orogen core) moved North relative to the overlying crust to form the Himalayan Syntaxes due to roll-on of this portion of the Indian plate. This displacement occurred below a lengthy succession of gently dipping decollements that formed episodically at a depth of 30 km along the orogen core due to numerous periods of gravitational collapse and spreading of the overlying ductile crust. Successively developed basal decollements were deformed when continued bulk horizontal shortening of the orogen core below reasserted dominance over the effects of gravitational collapse above causing refolding about steeply dipping axial planes. This resulted in northwards migration of the orogen core above depths of 30 km causing rocks metamorphosing at depths of 22 km on the north side of the orogen core to be moved to its south side with no change in depth as roll-on progressed. Garnet porphyroblasts record this lengthy history of lateral migration across the orogen within their inclusion trails. The 6.4 kbar average pressures accompanying it were obtained from the Mn, Fe and Ca contents of successive garnet cores. Garnet grew at depths of 22 km until movement towards the surface initiated on successively developed decollements that accommodated the volume constraints of gravitational collapse and spreading on both sides of the orogen. The speed of extrusional displacement increased the further the rocks migrated from the orogen core developing mylonitic schists around the porphyroblasts. This truncated inclusion trails against all matrix foliations as the porphyroblasts were carried towards the surface. Indeed, these rocks were multiply deformed during at least four distinct periods of deformation after mylonitization began and prior to exposure above the Main Central Thrust (MCT). Three or more sub-vertical and sub-horizontal foliations were formed during each of the five changes in FIA trend (foliation inflection ⁄ intersection axes in porphyroblasts) preserved in these rocks. The inclusion trail asymmetries and P-T of garnet core growth accompanying each FIA reveal that the first four changes in FIA trend, which define periods of tectonism about one direction of horizontal bulk shortening (relative plate motion), occurred on the north side of the orogen core. The fifth occurred on the south side of the orogen core and the switch in shear sense on gently dipping foliation planes that resulted from this shift to the south eventually led to the development of the MCT. When magnetic anomaly 22 that formed in the Southern Indian Ocean Ridge is taken into account, these five changes in FIA trend correlate markedly with changes in the motion of India relative to a constant Eurasia from 50 to c. 25 Ma. They reveal that Eurasia moved NNW during FIAs 1, 3 and 4 and SSE during FIA 5 when the shear sense on gently dipping foliations switched to top to the S. They suggest collision of India with Eurasia took place at 50 Ma, immediately prior to the development of FIA 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.