This study investigated cerebral hemodynamic responses to a neurovascular coupling (NVC) test in retired contact athletes with a history of repeated mild traumatic brain injury (mTBI) and in controls with no history of mTBI. Methods: Twenty-one retired rugby players (47.7 ± 12.9 year old; age at retirement: 38.5 ± 8.9 year; number of years playing rugby: 12.7 ± 3.7 year) with a history of three or more diagnosed concussions (8.9 ± 7.9 concussions per player) and 23 controls with no history of mTBI (46.5 ± 12.8 year old) performed a NVC test to detect task-orientated cerebral hemodynamic changes using functional near-infrared spectroscopy (fNIRS). Results: The NVC showed a statistically significant reduction in the cerebral hemodynamic response in comparison to the control group which had a greater relative increase of oxyhemoglobin (O 2 Hb). There were reductions in left middle frontal gyrus (MFG) O 2 Hb (−0.015 ± 0.258 µM) and relative increases in deoxyhemoglobin (HHb; −0.004 ± 0.159 µM) in the same region for the mTBI group in comparison to the control group (−0.160 ± 0.311 µM; −0.121 ± 0.076 µM for O 2 Hb and HHb, respectively). The mTBI group induced a greater rate of oxygen extraction compared to the control group. Conclusion: This was the first study to examine cerebral hemodynamic changes in retired rugby players in response to a NVC test, and we found reduced cerebral hemodynamic responses in participants with a history of mTBI compared to controls. These results suggest altered cerebral metabolic demands in participants with a history of multiple head injuries. Further research is needed to ascertain an understanding of the changes in hemodynamics from playing into retirement.
Dark chocolate (DC) is high in flavonoids and has been shown to increase nitric oxide in the blood. Increased nitric oxide has the potential to improve delivery of oxygen to muscle, especially in hypoxic conditions, such as altitude. Our aim was to assess the impact of DC supplementation on cycling performance at altitude. Twelve healthy, trained cyclists (n = 2 females, n = 10 males; age = 35 [12] years; height = 177 [7] cm; mass = 75.2 [11.0] kg; VO2max = 55 [6] ml·kg−1·min−1) were randomized to supplement with 60 g of DC or placebo twice per day for 14 days in a double-blind crossover study. After the 2 weeks of supplementation, the participants attended a laboratory session in which they consumed 120 g of DC or placebo and then cycled for 90 min at 50% peak power output, followed immediately by a 10-km time trial (TT) at simulated altitude (15% O2). The plasma concentration of blood glucose and lactate were measured before and at 15, 30, 60, and 90 min during the steady-state exercise and post TT, while muscular and prefrontal cortex oxygenation was measured continuously throughout exercise using near-infrared spectroscopy. DC resulted in a higher concentration of blood glucose (5.5 [0.5] vs. 5.3 [0.9] mmol/L) throughout the trial and lower blood lactate concentration following the TT (7.7 [1.92] vs. 10.0 [4.6] mmol/L) compared with the placebo. DC had no effect on the TT performance (19.04 [2.16] vs. 19.21 ± 1.96 min) or oxygenation status in either the prefrontal cortex or muscle. The authors conclude that, although it provided some metabolic benefit, DC is not effective as an ergogenic aid during TT cycling at simulated altitude.
Introduction: The prevalence and incidence of sport-related concussion have continued to increase over the past decade, and researchers from various backgrounds strive for evidenced-based clinical assessment and management. When diagnosing and managing a concussion, a battery of tests from several domains (e.g., symptom reporting, neurocognitive, physiology) must be used. In this study, we propose and develop an objective, evidence-based protocol to assess the pathophysiology of the brain by using non-invasive methods. Methods: Contact sport athletes (n = 300) will be assessed at the beginning of the season in a healthy state to establish baseline values, and then prospectively followed if a mild traumatic brain injury (mTBI) occurs on approximately days 1–2, 3–5, 7–10, 21, 30, and subsequently thereafter, depending on the severity of injury. The protocol includes spontaneous measurements at rest, during head postural change, controlled breathing maneuvers for cerebrovascular reactivity, a neurovascular coupling stimuli, and a baroreflex/autoregulation maneuver. Physiological data collection will include cerebral blood flow velocity, cerebral oxygenation, respiratory gases for end-tidal oxygen and carbon dioxide, finger photoplethysmography for blood pressure, seismocardiography for cardiac mechanics, and electrocardiography. Conclusion, Limitations, and Ethics: The protocol will provide an objective, physiological evidence-based approach in an attempt to better diagnose concussion to aid in return-to-play or -learn. Ethics approval has been granted by the University Research Ethics Board.
ABSTRACT:Cannabidiol (CBD) has been generating increasing interest in medicine due to its therapeutic properties and an apparent lack of negative side effects. Research has suggested that high dosages of CBD can be taken acutely and chronically with little to no risk. This review focuses on the neuroprotective effects of a CBD, with an emphasis on its implications for recovering from a mild traumatic brain injury (TBI) or concussion. CBD has been shown to influence the endocannabinoid system, both by affecting cannabinoid receptors and other receptors involved in the endocannabinoid system such as vanilloid receptor 1, adenosine receptors, and 5-hydroxytryptamine via cannabinoid receptor-independent mechanisms. Concussions can result in many physiological consequences, potentially resulting in post-concussion syndrome. While impairments in cerebrovascular and cardiovascular physiology following concussion have been shown, there is unfortunately still no single treatment available to enhance recovery. CBD has been shown to influence the blood brain barrier, brain-derived neurotrophic factors, cognitive capacity, the cerebrovasculature, cardiovascular physiology, and neurogenesis, all of which have been shown to be altered by concussion. CBD can therefore potentially provide treatment to enhance neuroprotection by reducing inflammation, regulating cerebral blood flow, enhancing neurogenesis, and protecting the brain against reactive oxygen species. Double-blind randomized controlled trials are still required to validate the use of CBD as medication following mild TBIs, such as concussion.
Current methods to diagnose concussions are subjective and difficult to confirm. A variety of physiological biomarkers have been reported, but with conflicting results. This study assessed heart rate variability (HRV), spontaneous baroreflex sensitivity (BRS), and systolic blood pressure variability (BPV) in concussed athletes. The assessment consisted of a 5-min seated rest followed by a 5-min (0.1 Hz) controlled breathing protocol. Thirty participants completed baseline assessments. The protocol was repeated during the post-injury acute phase (days one to five). Total (p = 0.02) and low-frequency (p = 0.009) BPV spectral power were significantly decreased during the acute phase of concussion. BRS down-sequence (p = 0.036) and up-sequence (p = 0.05) were significantly increased in the acute phase of concussion, with a trend towards an increased BRS pooled (p = 0.06). Significant decreases in HRV were also found. Acute concussion resulted in altered BRS and BPV dynamics compared to baseline. These findings highlight objective physiological parameters that could aid concussion diagnosis and return-to-play protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.