Conventional machine learning (ML) needs centralized training data to be present on a given machine or datacenter. The healthcare, finance, and other institutions where data sharing is prohibited require an approach for training ML models in secured architecture. Recently, techniques such as federated learning (FL), MIT Media Lab's Split Neural networks, blockchain, aim to address privacy and regulation of data. However, there are difference between the design principles of FL and the requirements of Institutions like healthcare, finance, etc., which needs blockchain-orchestrated FL having the following features: clients with their local data can define access policies to their data and define how updated weights are to be encrypted between the workers and the aggregator using blockchain technology and also prepares audit trail logs undertaken within network and it keeps actual list of participants hidden. This is expected to remove barriers in a range of sectors including healthcare, finance, security, logistics, governance, operations, and manufacturing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.