Metagenomics is one of the most prolific "omic" sciences in the context of biological research on environmental microbial communities. The studies related to metagenomics generate high-dimensional, sparse, complex, and biologically rich data-sets. In this research, we propose a framework which integrates omics-knowledge to identify suitable-reduced set of microbiomes features, for gaining insights into functional classification of the metagenomic sequences. The proposed approach has been applied to two Use Case studies, on: 1) cattle rumen microbiota samples, for differentiating nitrate and vegetable oil treated feed, for improving cattle performance, under MetaPlat H-2020 Project 1 , and 2) human gut microbiota and classifying them in functionally annotated categories of leanness, obesity, or overweight. A high Accuracy of 97.5 % and Area Under Curve performance value (AUC) of 0.972 was achieved for classifying Bos taurus, cattle rumen microbiota data samples using Logistic Regression (LR) as classification model as well as feature selector in wrapper based strategy for Use Case 1 and 94.4 % Accuracy with AUC of 1.000, for Use Case 2 on human gut microbiota. In general, LR classifier with Wrapper-LR learner (with ridge estimator) as feature selector, proved to be most robust in analysis.
With the advancement in internet technology all over the world, the demand for online education is growing. Many educational institutions are offering various types of online courses and e-content. The analytical models from data mining and computer science heuristics help in analysis and visualization of data, predicting student performance, generating recommendations for students as well as teachers, providing feedback to students, identifying related courses, e-content and books, detecting undesirable student behaviours, developing course contents and in planning various other educational activities. Today many educational institutions are using data analytics for improving the services they provide. The data access patterns about students, logged and collected from online educational learning systems could be explored to find informative relationships in the educational world. But a major concern is that the data are exploding, as numbers of students and courses are increasing day by day all over the world. The usage of Big Data platforms and parallel programming models like MapReduce may accelerate the analysis of exploding educational data and computational pattern finding capability. The paper focuses on trial of educational modelling based on Big Data techniques.
"Metagenomics" is the study of genomic sequences obtained directly from environmental microbial communities with the aim to linking their structures with functional roles. The field has been aided in the unprecedented advancement through high-throughput omics data sequencing. The outcome of sequencing are biologically rich data sets. Metagenomic data consisting of microbial spe-cies which outnumber microbial samples, lead to the "curse of dimensionality". Hence the focus in metagenomics studies has moved towards developing efficient computational models using Machine Learning (ML), reducing the computational cost. In this paper, we comprehensively assessed various ML approaches to classifying high-dimensional human microbiota effectively into their functional phenotypes. We propose the application of embedded feature selection methods, namely, Extreme Gradient Boost-ing and Penalized Logistic Regression to determine important species. The resultant feature set enhanced the performance of one of the most popular state-of-the-art methods, Random Forest (RF) over metagenomic studies. Experimental results indicate that the proposed method achieved best results in terms of accuracy, area under Receiver Operating Characteristic curve (ROC-AUC) and major improvement in processing time. It outperformed other feature selection methods of filters or wrappers over RF and classifiers such as Support Vector Machine (SVM), Extreme Learning Machine (ELM), and -Nearest Neighbors (-NN).
Aging refers to progressive physiological changes in a cell, an organ, or the whole body of an individual, over time. Aging-related diseases are highly prevalent and could impact an individual’s physical health. Recently, artificial intelligence (AI) methods have been used to predict aging-related diseases and issues, aiding clinical providers in decision-making based on patient’s medical records. Deep learning (DL), as one of the most recent generations of AI technologies, has embraced rapid progress in the early prediction and classification of aging-related issues. In this paper, a scoping review of publications using DL approaches to predict common aging-related diseases (such as age-related macular degeneration, cardiovascular and respiratory diseases, arthritis, Alzheimer’s and lifestyle patterns related to disease progression), was performed. Google Scholar, IEEE and PubMed are used to search DL papers on common aging-related issues published between January 2017 and August 2021. These papers were reviewed, evaluated, and the findings were summarized. Overall, 34 studies met the inclusion criteria. These studies indicate that DL could help clinicians in diagnosing disease at its early stages by mapping diagnostic predictions into observable clinical presentations; and achieving high predictive performance (e.g., more than 90% accurate predictions of diseases in aging).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.