Hyaluronan (HA) is an extracellular matrix polysaccharide that promotes cell migration through its cell surface receptors and by effecting changes in the physical environment. HA expression is frequently increased in malignant tumors, whereas its association with the invasive potential and patient outcome in breast cancer has not been reported. The localization and signal intensity of HA was analyzed in 143 paraffin-embedded tumor samples of human breast carcinoma using a biotinylated HA-specific probe. In the immediate peritumoral stroma, HA signal was moderately or strongly increased in 39% and 56% of the cases, respectively. Normal ductal epithelium showed no HA, whereas in 57% of the tumors at least some of the carcinoma cells were HA positive. The intensity of the stromal HA signal and the presence of cell-associated HA were both significantly related to poor differentiation of the tumors, axillary lymph node positivity, and short overall survival of the patients. In Cox's multivariate analysis, both the intensity of stromal HA signal alone and that combined with the HA positivity in tumor cells were independent prognostic factors for overall survival. These results suggest that HA is directly involved in the spreading of breast cancer and may offer a potential target for new therapies.
Cultured bovine articular cartilage was subjected to 50 ms, 0.5-1.0 MPa compressions repeated at intervals of 2-60 s for 1.5 h and simultaneously labeled with 35SO4. The compression was delivered with a 4-mm-diameter nonporous loading head on an 8-mm-diameter cartilage explant. This method created directly compressed (central) and uncompressed (border) areas within the tissue. Analysis of the whole explant under a 0.5 MPa load showed significantly increased 35SO4 incorporation by compression repeated at 2- and 4-s but not at 20- and 60-s intervals. When the incorporation was studied separately in the border and central areas, a statistically significant stimulation was noticed in the central area with a 4-s cycle, while the border area was stimulated with a 2-s cycle. Autoradiography of the central area showed that the stimulation with 0.5 MPa and a 4-s cycle occurred through the whole depth of the cartilage, while raising the pressure to 1 MPa or the frequency to 2 s reduced the stimulation, particularly in the superficial cartilage. In the border area the stimulation with 0.5 MPa and a 2-s cycle was noted in the superficial zone only. The stimulation of proteoglycan synthesis is thus limited to certain loading frequencies and pressures and occurs in specific areas under and around the loaded site. Its rapid appearance suggests enhanced glycosylation or sulfation of core proteins or enhanced speed of posttranslational processing.
Peroxisome proliferator-activated receptor ␥ coactivator 1␣ (PGC-1␣) is an attractive candidate gene for type 2 diabetes, as genes of the oxidative phosphorylation (OXPHOS) pathway are coordinatively downregulated by reduced expression of PGC-1␣ in skeletal muscle and adipose tissue of patients with type 2 diabetes. Here we demonstrate that transgenic mice with activated polyamine catabolism due to overexpression of spermidine/spermine N 1 -acetyltransferase (SSAT) had reduced white adipose tissue (WAT) mass, high basal metabolic rate, improved glucose tolerance, high insulin sensitivity, and enhanced expression of the OXPHOS genes, coordinated by increased levels of PGC-1␣ and 5-AMP-activated protein kinase (AMPK) in WAT. As accelerated polyamine flux caused by SSAT overexpression depleted the ATP pool in adipocytes of SSAT mice and N 1 ,N 11 -diethylnorspermine-treated wild-type fetal fibroblasts, we propose that low ATP levels lead to the induction of AMPK, which in turn activates PGC-1␣ in WAT of SSAT mice. Our hypothesis is supported by the finding that the phenotype of SSAT mice was reversed when the accelerated polyamine flux was reduced by the inhibition of polyamine biosynthesis in WAT. The involvement of polyamine catabolism in the regulation of energy and glucose metabolism may offer a novel target for drug development for obesity and type 2 diabetes.Type 2 diabetes is a growing epidemic worldwide. Defects in insulin secretion and insulin action are fundamental disorders of this disease (30). Several mechanisms regulating insulin secretion and insulin action have been identified, but none of them is likely to explain completely the risk of type 2 diabetes. Previous studies have revealed novel mechanisms, distinct from the insulin signaling pathway, for type 2 diabetes. Mootha et al. (36) identified a set of genes involved in oxidative phosphorylation (OXPHOS), the expression of which was coordinately decreased in human diabetic muscle. Similarly, Patti et al. (40) found the downregulation of OXPHOS not only in individuals with type 2 diabetes but also in their first-degree relatives. In both of these studies, decreased peroxisome proliferator-activated receptor (PPAR) ␥ coactivator 1␣ (PGC-1␣) expression was responsible for the downregulation of OX PHOS genes. In addition, the expression of PGC-1␣ has been shown to be downregulated in white adipose tissue (WAT) of insulin-resistant (15) and morbidly obese (50) subjects.PGC-1␣ was first identified as a coactivator of PPAR␥ (45), and it plays a critical role in the regulation of adaptive thermogenesis. Subsequent studies have demonstrated that PGC-1␣ regulates mitochondrial biogenesis (49), uncoupling (45, 56), fatty acid oxidation (61), OXPHOS (36), glucose transport in muscle (35), hepatic gluconeogenesis (64), and skeletal muscle fiber-type switching (44). PGC-1␣ is highly expressed in brown adipose tissue (BAT), heart, and skeletal muscle and moderately expressed in liver, but a low expression level is found in WAT. The expression of PGC-1␣ is ind...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.