ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling procedures, and discuss the performance of the ALICE detectors and analysis methods for various physics observables.
The design, construction, and commissioning of the ALICE Time-Projection Chamber (TPC) is described. It is the main device for pattern recognition, tracking, and identification of charged particles in the ALICE experiment at the CERN LHC. The TPC is cylindrical in shape with a volume close to 90 m 3 and is operated in a 0.5 T solenoidal magnetic field parallel to its axis.In this paper we describe in detail the design considerations for this detector for operation in the extreme multiplicity environment of central Pb-Pb collisions at LHC energy. The implementation of the resulting requirements into hardware (field cage, readout chambers, electronics), infrastructure (gas and cooling system, laser-calibration system), and software led to many technical innovations which are described along with a presentation of all the major components of the detector, as currently realized. We also report on the performance achieved after completion of the first round of stand-alone calibration runs and demonstrate results close to those specified in the TPC Technical Design Report.
Actinobacillus actinomycetemcomitans strains with enhanced levels of production of leukotoxin are characterized by a 530-bp deletion from the promoter region of the leukotoxin gene operon. Previous isolates with this deletion constituted a single clone belonging to serotype b, although they displayed minor differences among each other. We have analyzed the geographic dissemination of this clone by examining 326 A. actinomycetemcomitans isolates from healthy and periodontally diseased individuals as well as from patients with different types of extraoral infections originating from countries worldwide. A total of 38 isolates, all belonging to the same clone, showed the 530-bp deletion. Comparison of a 440-bp sequence from the promoter region of the leukotoxin gene operon from 10 of these strains revealed complete identity, which indicates that the deletion originates from a single mutational event. This particular clone was exclusively associated with localized juvenile periodontitis (LJP). In at least 12 of 28 families from which the clone was isolated, more than one family member had LJP. Notably, all the subjects carrying this clone had a genetic affiliation with the African population. These observations suggest that juvenile periodontitis in some adolescents with an African origin is associated with a disseminating clone of A. actinomycetemcomitans.
The bacterium Actinobacillus actinomycetemcomitans has been implicated in the pathogenesis of juvenile periodontitis as the etiologic agent on the basis of several lines of circumstantial evidence. A matter of extensive debate is whether A. actinomycetemcomitans is an exogenous contagious pathogen or an opportunistic pathogen that resides in the normal oral microflora. Here we show evidence of a single clone of A. actinomycetemcomitans isolated from multiple patients with juvenile periodontitis in members of families of African origin living in geographically widespread areas. The clone is characterized by a 530-bp deletion in the leukotoxin gene operon, resulting in a significantly increased production of leukotoxin.
Young adults with RA may develop periodontal destruction, and these patients require professional attention. Both differences and similarities in periodontal and hematological variables were seen in individuals with periodontitis, JIA, and RA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.