Palm kernel oil is extracted from palm fruit as well as palm oil and is considered to be a potential feedstock for biodiesel production. The objective of this paper is to evaluate the feasibility of using biodiesel from palm kernel oil on a direct injection (DI) diesel engine under three different engine speeds and at various gradational engine load conditions. Experimental results demonstrate that the brake specific fuel consumption (BSFC) increased as the percentage of palm kernel oil methyl ester (PKOME) fuel in blends increased, producing the same level of engine power as petroleum diesel (PD), because of the decreased lower heating value (LHV). In addition, increasing the percentage of PKOME fuel in blends reduces the exhaust gas temperature (EGT), the amount of smoke and total hydrocarbon (THC) emissions, and the formation of nitrogen oxides (NO x ) emissions, because of the shorter carbon-chain lengths, more saturated carbon bonds, and higher oxygen content of PKOME fuel when compared with the same percentage of palm oil methyl ester (POME) fuel in blends.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.