This paper proposes using a liquid lens as a compensating lens and applying intermediate optics to achieve a 9× zoom ratio. The droplet shape and location of the liquid lens can be adjusted reversibly, enabling the focal length and position of the lens to be tuned by varying the voltage applied to a set of electrodes. Therefore, liquid lenses can replace complex lenses to reduce the total length of optomechanical systems. The CODE V built-in optimization method was used to determine the optimal liquid lens parameters at various zoom ratios. Several general optical aberrations were considered. Compared with a standard intermediate optics system featuring 9× zoom and no compensating lens, the proposed lens improved the Petzval surface curvature (PTZ) and modulation transfer function (MTF). Simulation results revealed that the PTZ decreased 10.92% and the MTF increased 3988% in 40 1p/mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.