Background The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are a first-line therapy for non-small cell lung cancer (NSCLC) with EGFR mutations. Approximately half of the patients with EGFR-mutated NSCLC are treated with EGFR-TKIs and develop disease progression within 1 year. Therefore, the early prediction of tumor progression in patients who receive EGFR-TKIs can facilitate patient management and development of treatment strategies. We proposed a deep learning approach based on both quantitative computed tomography (CT) characteristics and clinical data to predict progression-free survival (PFS) in patients with advanced NSCLC after EGFR-TKI treatment. Methods A total of 593 radiomic features were extracted from pretreatment chest CT images. The DeepSurv models for the progression risk stratification of EGFR-TKI treatment were proposed based on CT radiomic and clinical features from 270 stage IIIB-IV EGFR-mutant NSCLC patients. Time-dependent PFS predictions at 3, 12, 18, and 24 months and estimated personalized PFS curves were calculated using the DeepSurv models. Results The model combining clinical and radiomic features demonstrated better prediction performance than the clinical model. The model achieving areas under the curve of 0.76, 0.77, 0.76, and 0.86 can predict PFS at 3, 12, 18, and 24 months, respectively. The personalized PFS curves showed significant differences (p < 0.003) between groups with good (PFS > median) and poor (PFS < median) tumor control. Conclusions The DeepSurv models provided reliable multi-time-point PFS predictions for EGFR-TKI treatment. The personalized PFS curves can help make accurate and individualized predictions of tumor progression. The proposed deep learning approach holds promise for improving the pre-TKI personalized management of patients with EGFR-mutated NSCLC.
Patient outcomes of non-small-cell lung cancer (NSCLC) vary because of tumor heterogeneity and treatment strategies. This study aimed to construct a deep learning model combining both radiomic and clinical features to predict the overall survival of patients with NSCLC. To improve the reliability of the proposed model, radiomic analysis complying with the Image Biomarker Standardization Initiative and the compensation approach to integrate multicenter datasets were performed on contrast-enhanced computed tomography (CECT) images. Pretreatment CECT images and the clinical data of 492 patients with NSCLC from two hospitals were collected. The deep neural network architecture, DeepSurv, with the input of radiomic and clinical features was employed. The performance of survival prediction model was assessed using the C-index and area under the curve (AUC) 8, 12, and 24 months after diagnosis. The performance of survival prediction that combined eight radiomic features and five clinical features outperformed that solely based on radiomic or clinical features. The C-index values of the combined model achieved 0.74, 0.75, and 0.75, respectively, and AUC values of 0.76, 0.74, and 0.73, respectively, 8, 12, and 24 months after diagnosis. In conclusion, combining the traits of pretreatment CECT images, lesion characteristics, and treatment strategies could effectively predict the survival of patients with NSCLC using a deep learning model.
Previous studies reported that the patients with asymptomatic internal carotid stenosis (aICS) had a higher risk of stroke and recall verbal memory impairment. However, whether the side of aICS could cause different verbal memory outcomes was less explored. In this study, significant difference of functional connectivity (FC) was found between the left and right aICS groups. The correlation analysis estimating the association between FC and recall verbal memory also presented different profiles between two aICS groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.