GPC appearance volumes have been determined for a series of linear polyethylene, polystyrene, and polybutadiene fractions (Mw/Mn < 1.1) in trichlorobenzene at 130°C. and for the latter two series in tetrahydrofuran at 23°C. A polymer‐type independent relationship between appearance volumes and the equivalent hydrodynamic radii of the polymer molecules has been demonstrated. The equivalent hydrodynamic radius is calculated from intrinsic viscosity data. It is proposed that this relationship can be used to construct a universal GPC calibration curve for polymers that assume a spherical conformation in solution. Methods for applying the universal curve to the determination of molecular weight averages and molecular weight distribution are described. In addition, a method is outlined by which the universal calibration curve can be empolyed for determining number‐average Mark‐Houwink constants from polydisperse samples.
The effects of operational variables on calibration of GPC are reported. Variables examined include (1) temperature and solvent changes, (2) sample concentration, (3) injection time, and (4) flow rate. Each of these variables significantly affected molecular weight averages calculated from GPC data. The causes and methods of minimizing the effects produced by the individual variables are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.