This paper reports large eddy simulations of the interaction between an atmospheric boundary layer and a canopy (representing a forest cover). The problem is studied for a homogeneous configuration representing the situation encountered above a continuous forest cover, as well as for a heterogeneous configuration representing the situation similar to an edge or a clearing in a forest. The numerical results reproduces correctly all the main characteristics of this flow as reported in the literature: the formation of a first generation of coherent structures aligned transversally with the wind flow direction, the reorganization and the deformation of these vortex tubes into horse-shoe structures. The results obtained when introducing a discontinuity in the canopy (reproducing a clearing or a fuel break in a forest), are compared with the experimental data collected in a wind tunnel; here, the results confirm the existence of a strong turbulence activity inside the canopy at a distance equal to 8 times the height of the canopy, referenced in the literature as the Enhance Gust Zone (EGZ) characterized by a local peak of the skewness factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.