In this study, solidification cracking in pulsed laser welding of fully austenitic, AISI Type 316 stainless steel has been analysed at different energy transfer modes. The pulse parameters have been selected appropriately to obtain conduction, transition and keyhole mode welds. Conduction and transition mode welds exhibit higher susceptibility to cracking than keyhole mode welds. It is observed that both heat input and energy transfer mode affect the cooling rate and hence influence solidification cracking. Microstructures of the fusion zone have been analysed, and the cooling rate experienced by the weld is estimated from the mean cell size in the weld. It is found that the critical cooling rate below which cracking does not occur is ,10 4 K s 21 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.