Utilization of smart systems, i.e. software tools that incorporate artificial intelligence (AI), in engineering applications increases. This fact is due to their ability to study the performance of complicated systems, producing results quicker and easier than typical analytical models. This article is focused on the advantages of using Artificial Neural Networks (ANNs) to solve the problem of a misaligned hydrodynamic journal bearing. Firstly, the Reynolds equation is solved using finite difference method (FDM) for different operating and misalignment conditions. The results are used to train four (4) artificial neural networks, one for each design parameter. Afterwards, the networks are tested for several operational characteristics and compared with the results of the finite difference method. The outcome is that the force and the torque can be predicted with maximum error of approximately 5% with less computational cost than the finite difference method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.