Modulation of the biological effects produced by ionizing radiation (IR) using microwave and magnetic fields has important theoretical and practical applications. Response of human buccal epithelium cells to different physical agents (single and combined exposure to 0.5–5 Gy γ-radiation (60Co); microwaves with the frequency of 36.64 GHz and power densities of 0.1 and 1 W/m2, and static magnetic field with the intensity of 25 mT) has been investigated. The stress response of the cells was evaluated by counting heterochromatin granules quantity (HGQ) in the cell nuclei stained with orcein. Membrane permeability was assessed by the percentage of cells stained with indigocarmine (cells with damaged membrane). The increase of heterochromatin granules quantity (HGQ), i.e. chromatin condensation was detected at the doses of 2 Gy and higher. Changes in the cell membrane permeability to indigocarmine expressed the threshold effect. Membrane permeability reached the threshold at the doses of 2–3 Gy for the cells of different donors and did not change with the increase of the dose of γ-radiation. Cells obtained from different donors revealed some individual peculiarities in their reaction to γ-radiation. The static magnetic field and microwaves applied before or after γ-radiation decreased its impact, as revealed by means of HGQ assessment.
Background. It is a point of discussion whether low-dose ionizing radiation has harmful or stimulating impact on cell. According to high relative biological effectiveness of neutron radiation there is a need of description of any process triggered in the cell by neutrons. Objective. The aim of current work is the investigation of the low dosed neutron radiation effects on human cells by indicators of cell stress such as state of chromatin and cell membrane permeability. Materials and methods. Human buccal epithelium cells from 3 male donors (21, 24, 25 years old) were exposed to fast neutron radiation in dose range 2.3–146.0 mSv from 239Pu-Be source. State of chromatin was evaluated by count of heterochromatin granules quantity in 100 nuclei stained with 2% orcein in 45% acetic acid; ratio of cells with increased membrane permeability stained with 5 mM indigocarmine in 300 cells. Results. Changes in level of heterochromatin granules quantity and in cell membrane permeability revealed wave-shaped dependency with maximum effects at 36.5 mSv. Further increase of dose resulted in return of both chromatin state and membrane permeability levels closely to control or even lower. Conclusion. Membrane restoration and chromatin decompaction under doses higher than 36.5 mSv together can be a sign of hormetic (stimulating) effect of low-dose neutron radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.