Polyvinyl chloride (PVC) is the most widely produced synthetic plastic polymer in the world: it has a variety of applications due to its low cost, elasticity, light weight, good mechanical characteristics and corrosion resistance. In order to protect living beings from harmful radiation such as gamma rays, novel low-cost chalcocite and hematite-based PVCs were fabricated for shielding purposes. The mass attenuation coefficient μ m for various fabricated hematite and chalcocite-based PVCs was calculated using MCNP-5 code. The results were compared with the values calculated theoretically using XCOM software between 0.015 and 15 MeV. Moreover, the simulated μ m parameter for chalcocite/PVC and hematite/PVC was used to calculate other shielding factors, such as the half value layer (HVL), the mean free path (MFP) effective atomic number Z eff , the geometric-progress (G-P) fitting parameters and the exposure buildup factor (EBF). The simulated data of μ m for all composites is comparable to that obtained from a theoretical calculation. The results showed that the addition of hematite and chalcocite enhance the μ m of PVC polymers. We also found that the μ m of chalcocite/PVC is higher than that of hematite/PVC due to the copper content in the former.
Due to their excellent heat resistance, superalloys are used predominantly in the manufacturing of engine parts and accessories for aircraft and aerospace equipment. The Monte Carlo simulation (MCNP-5) code was performed to estimate the mean track length of the incident photons inside six different alloys. Then, based on the simulated track length, other important γ-ray shielding parameters were calculated. In this study, the highest mass attenuation coefficient was obtained for alloys encoded MAR-302 and MAR-247 and varied in the range 0.035–72.94 and 0.035–71.98 cm2·g−1, respectively. The lowest mass attenuation coefficient was found for alloys coded Inconel-718 and Nimocast-75 with a range of 0.033–59.25 and 0.32–59.30 cm2·g−1, respectively. Use was made of a recently developed online program Phy-X/PD to calculate the effective atomic number, equivalent atomic number, and the buildup factors for the alloys of interest. The effective removal cross-section for the fast neutron was also calculated for the studied alloys: the highest value was found for the alloys coded with Inconel-718 (∑R = 0.01945 cm2·g−1) and Nimocast-75 (∑R = 0.01940 cm2·g−1), and the lowest value was obtained for alloy coded MAR-302 (∑R = 0.01841 cm2·g−1). Calculated data indicate that MAR-302 and MAR-247 are superior candidates for shielding of gamma-rays, while Inconel-718 and Nimocast-75 MAR-302 are suitable for the shielding of fast neutrons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.