The objective was to compare effects of three metabolic regulators on development of post-compaction bovine embryos. In-vitro-produced 8- to 16-cell embryos were allocated to treatments for 72 h in G2.2 medium as follows: 0.3 microm phenazine ethosulfate (PES); 27 microm sodium azide (NaN3); 30 microm 2,4-dinitrophenol (DNP); and control, no regulator. Treatments responded similarly for blastocyst rates and embryo quality responses (P > 0.1). The PES treatment resulted in higher glucose metabolism than the NaN3 treatment (18.5 v. 14.5 pmol per embryo per h, P < 0.05), and both did not differ from DNP or the control. The PES treatment tended to result in more flux of glucose through the pentose phosphate pathway (PPP) than the control (50.5 v. 21.5%, P < 0.11). The NaN3 treatment caused more glucose uptake than the PES treatment (38.9 v. 13.1 pmol per embryo per h, P < 0.01), but neither differed from the control or DNP treatment (P > 0.1). Glycolysis for the PES treatment was 187%, which was higher than any of the other groups (88-94%; P < 0.01). There were fewer medium + large lipid granules in the cytoplasm of PES-treated embryos than any other group, including the in vitro control (P < 0.01). However, in vivo control embryos had still fewer large and medium-sized lipid granules (P < 0.01) than the PES treatment. Developmental competence to Day 14 after embryo transfer was similar among treatments. The PES treatment increased glucose metabolism, tended to increase the PPP flux of glucose and clearly reduced accumulation of lipids in embryos produced in the chemically defined media used. Use of PES in culture media may be a promising approach to improving in vitro production of embryos.
The toxic and/or beneficial effects of four metabolic regulators on embryo development were evaluated. In-vitro-produced compact morulae were cultured for 3 days in a chemically defined medium + bovine serum albumin (BSA; CDM-2) plus regulators (4991 total embryos). Phenazine ethosulfate (PES), phloretin (PL), pyrroline-5-carboxylate (P5C), and sodium azide (NaN3) were evaluated at four doses each in factorial combinations with four concentrations of glucose: 0, 0.5, 2, and 8 mm. Phenazine ethosulfate at 0.9 microm resulted in poorer development than lower or no PES. Phloretin was, in general, detrimental for embryo development, but most markedly at the highest dose (270 microm). Pyrroline-5-carboxylate had little effect on post-compaction embryos at the doses studied, 9 to 81 microm. Sodium azide at the concentrations used (3, 9, and 27 microm) had little effect on embryo development compared with controls. Concentrations of glucose had little effect on development of embryos. A fifth metabolic regulator, 2,4-dinitrophenol (DNP), was studied at various doses at pre-morula or morula-blastocyst stages cultured in 2 mm glucose. Embryos (2189 total) cultured in 90 microm DNP developed more slowly and were darker than embryos cultured at lower doses. Embryos cultured in 30 microm DNP had a higher blastocyst rate (48.3%) than controls (34.9%). In the last experiment using G1.2/G2.2 media, DNP (30 microm) resulted in a marked decrease in embryonic development when embryos were exposed at the zygote to 8- to 16-cell stages but had little effect when morulae were exposed for 2 days. The dose-response information for these metabolic regulators is crucial for designing future experiments.
Reduced atmospheric oxygen concentration is beneficial to embryo development; however, optimal oxygen concentration for oocyte maturation remains undetermined. Likewise, there is no consensus of appropriate medium supplementation during maturation. The objective of this study was to determine whether oxygen tension (20% or 5% O2) and epidermal growth factor (EGF) affect oocyte metabolism and subsequent embryo development. Cumulus-oocyte complexes (COCs) were collected from 28-day-old equine chorionic gonadotropin (eCG) primed or unprimed F1 (C57BL/6xCBA) mice. COCs were matured in defined medium in one of four groups: 20% O2, 20% O2 + EGF, 5% O2, 5% O2 + EGF. In vivo matured COCs were also collected for analysis. COCs from unprimed mice, matured in 5% O2 +/- EGF or 20% O2 + EGF had higher metabolic rates than COCs matured in 20% O2 (P < 0.05). COCs from primed mice had higher metabolic rates when matured in the presence of EGF, regardless of oxygen tension (P < 0.01). Oxygen uptake and mitochondrial membrane potential were higher for in vivo matured oocytes and oocytes matured under 5% O2 compared to oocytes matured under 20% O2 (P < 0.05). Blastocyst formation was not different between maturation groups (primed or unprimed); however, embryo cell numbers were 20-45% significantly higher when COCs were matured at 5% O2 (P < 0.05). Results suggest that oocytes matured in physiological concentrations of oxygen have improved development and metabolic activity, more closely resembling in vivo maturation. These findings have implications for oocyte maturation in both clinical and research laboratories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.