A numerical modelling technique for predicting the detailed performance of a double-inlet type two-stage pulse tube refrigerator has been developed. The pressure variations in the compressor, pulse tube, and reservoir were derived, assuming the stroke volume variation of the compressor to be sinusoidal. The relationships of mass flowrates, volume flowrates, and temperature as a function of time and position were developed. The predicted refrigeration powers are calculated by considering the effect of void volumes and the phase shift between pressure and mass flowrate. These results are compared with the experimental results of a specific pulse tube refrigerator configuration and an existing theoretical model. The analysis shows that the theoretical predictions are in good agreement with each other.
Cooling of electronics and micro-electronics devices is an important task in our present world. Synthetic jet is a relatively new technique for electronic chip cooling which synthesizes stagnant air to form a jet resulted from periodic oscillations of a diaphragm in a cavity. Synthetic jet cooling increases the rate of heat transfer as compared to other cooling techniques. The impingement heat transfer characteristics of a synthetic jet is studying in this work. Synthetic jet is driven by a piston-cylinder arrangement a through circular nozzle for the impingement of jet on the heated surface. Air is considered as the cooling medium. Heat flux is taken as 8000W/m2. Numerical simulations and experimental methods are conducted to study the effect of various distance between the orifice and the heated plated(Z). A circular orifice is used to study the characteristics of convective heat transfer. The results are verified by the time history of convective heat transfer characteristic and validated with experimental results. The model was simulated to investigate the dispersion of heat flow on the walls using a mathematical turbulent model of k- ω SST. The Reynolds number (Re) is in the range of 4000-8000 based on average velocity, while the normalized impinging distance varies between 2D to 10 D The results shows the significant influence of Z/D ratio and sinusoidal wave frequencies to the heat transfer rate obtained. Experimental and numerical investigations is carried out to study the variation of Nusselt number with jet velocity. It is found that the Z/D ratio at 6 gives the maximum amount of cooling for a flat plate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.