Introduction. Cross-laminated timber (CLT) has started to win a market in Russia. Humidity plays an important role in ensuring the operational reliability of buildings based on timber structures. The lack of comprehensive studies on the influence of varying temperature and humidity actions, including atmospheric ones, hinders the development of CLT.Aim. In this work, the influence of atmospheric actions on various types of CLT building structures was determined in order to amend the requirements in SP 64.13330.2017 for the design and protection of CLT structures.Materials and methods. Samples of CLT wall panels and floor slabs manufactured as per the current regulatory documents were used as an object of research. Field tests were developed in order to determine the influence of atmospheric actions on the strength and elastic characteristics of CLT panels.Results. Atmospheric actions have an adverse effect on the strength and elastic characteristics of CLT panels. The decrease in the strength and elastic characteristics varies for the samples of floor slabs and wall panels.Conclusion. It is proposed that several recommendations given based on the experimental results on the resistance CLT to atmospheric actions are to be included in SP 64.13330.2017 for the design, manufacture, and construction of buildings using CLT structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.