Introduction. Composite materials are the main way to reduce the weight of the aircraft structure and improve its flight performance. Methods of non-destructive testing enable to assess the technical condition of composite materials, as well as to determine stress concentrators in them to make a decision on the further operation of this control object. The paper presents an analysis of the use of composite materials in the aircraft design and ways to improve their flight performance through the application of composites. An acoustic-emission method for assessing crack resistance based on invariants was described. The study aimed at increasing the accuracy and efficiency of assessing the crack resistance of aircraft structures made of composite materials through the use of the acoustic emission method of non-destructive testing. Materials and Methods. The nomenclature of composite materials used in aircraft was given, and their physical and mechanical properties were compared. The acoustic emission method of non-destructive testing of composite materials based on invariant ratios was used. Results. A method for assessing the crack resistance of primary structural elements based on the invariants of acoustic emission processes, and a program apparatus complex based on it has been developed. Discussion and Conclusions. The results obtained can be used to determine the strength characteristics of composite materials by the acoustic emission method of non-destructive testing to assess the technical condition of primary structural elements in mechanical engineering, shipbuilding, and aircraft construction. The paper is recommended to researchers involved in the development of aircraft.
Due to a steady extension of the flight envelope of modern agile combat aircraft, with the growing requirements for state tests, it is increasingly necessary to study the entire flight envelope and specifically, to determine the main performance data of individual maneuvers. Currently, state tests are based on a flight full-scale experiment, which is cost-ineffective in terms of cost, duration, and limit lines of the flight envelope. The accelerating trends to update state tests are semirealistic simulation and complex simulation modeling. The article presents the various techniques to determine main performance data of a three-dimensional maneuver split-S, which include the calculation method, semirealistic simulation, and simulation modeling. The calculation method is understood as calculation formulas expressed from the system of equations for motion of the aircraft mass center. Semirealistic simulation was carried out using a flight-simulation stand by operator pilots. Simulation modeling was conducted using a complex simulation model of an aircraft, consisting of a pilot’s control actions model based on fuzzy logic. The article provides the description, advantages and disadvantages, comparison of the results of each of the techniques. The calculation method, despite its efficiency, is the most inaccurate due to the complexity and inability to define the average flight parameters. Additionally, this method does not take into consideration such factors as the aircraft flight configuration, atmospheric disturbances, the pilot’s command profile, the logic of the permissible flight envelope limiter operation. The results of semirealistic simulation showed that this method is more accurate than the calculation one, but complex and time consuming in terms of the organization and execution of experiments. The analysis of the study illustrated that the most appropriate way to determine main performance data of split-S is simulation modeling on a complex simulation model of the aircraft, because the given method considerably saves financial and time resources used on state flight tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.