F(1)-ATPase is a rotary molecular motor that proceeds in 120 degrees steps, each driven by ATP hydrolysis. How the chemical reactions that occur in three catalytic sites are coupled to mechanical rotation is the central question. Here, we show by high-speed imaging of rotation in single molecules of F(1) that phosphate release drives the last 40 degrees of the 120 degrees step, and that the 40 degrees rotation accompanies reduction of the affinity for phosphate. We also show, by single-molecule imaging of a fluorescent ATP analog Cy3-ATP while F(1) is forced to rotate slowly, that release of Cy3-ADP occurs at approximately 240 degrees after it is bound as Cy3-ATP at 0 degrees . This and other results suggest that the affinity for ADP also decreases with rotation, and thus ADP release contributes part of energy for rotation. Together with previous results, the coupling scheme is now basically complete.
ATP, the main biological energy currency, is synthesized from ADP and inorganic phosphate by ATP synthase in an energy-requiring reaction. The F1 portion of ATP synthase, also known as F1-ATPase, functions as a rotary molecular motor: in vitro its gamma-subunit rotates against the surrounding alpha3beta3 subunits, hydrolysing ATP in three separate catalytic sites on the beta-subunits. It is widely believed that reverse rotation of the gamma-subunit, driven by proton flow through the associated F(o) portion of ATP synthase, leads to ATP synthesis in biological systems. Here we present direct evidence for the chemical synthesis of ATP driven by mechanical energy. We attached a magnetic bead to the gamma-subunit of isolated F1 on a glass surface, and rotated the bead using electrical magnets. Rotation in the appropriate direction resulted in the appearance of ATP in the medium as detected by the luciferase-luciferin reaction. This shows that a vectorial force (torque) working at one particular point on a protein machine can influence a chemical reaction occurring in physically remote catalytic sites, driving the reaction far from equilibrium.
The development of red blood cells (erythrocytes) is distinguished by high-level production of the oxygen carrier, haemoglobin A (HbA), a heterotetramer of alpha- and beta-haemoglobin subunits. HbA synthesis is coordinated to minimize the accumulation of free subunits that form cytotoxic precipitates. Molecular chaperones that regulate globin subunit stability, folding or assembly have been proposed to exist but have never been identified. Here we identify a protein stabilizing free alpha-haemoglobin by using a screen for genes induced by the essential erythroid transcription factor GATA-1 (refs 4, 5). Alpha Haemoglobin Stabilizing Protein (AHSP) is an abundant, erythroid-specific protein that forms a stable complex with free alpha-haemoglobin but not with beta-haemoglobin or haemoglobin A (alpha(2)beta(2)). Moreover, AHSP specifically protects free alpha-haemoglobin from precipitation in solution and in live cells. AHSP-gene-ablated mice exhibit reticulocytosis and abnormal erythrocyte morphology with intracellular inclusion bodies that stain positively for denatured haemoglobins. Hence, AHSP is required for normal erythropoiesis, probably acting to block the deleterious effects of free alpha-haemoglobin precipitation. Accordingly, AHSP gene dosage is predicted to modulate pathological states of alpha-haemoglobin excess, such as beta-thalassaemia.
Although estrogen is known to activate endothelial nitric oxide synthase (eNOS) in the vascular endothelium, the molecular mechanism responsible for this effect remains to be elucidated. In studies of both human umbilical vein endothelial cells ( The inhibitory effect of estrogen on the development of atherosclerosis has been suggested by abundant human epidemiological and animal experimental data (1-9). The incidence of atherosclerotic diseases is lower in premenopausal women than in men, steeply rises in postmenopausal women, and is reduced to premenopausal levels in postmenopausal women who receive estrogen therapy (10 -12). Until recently, the atheroprotective effects of estrogen were attributed principally to the effects on serum lipid concentrations. However, estrogeninduced alterations in serum lipids account for only approximately one-third of the observed clinical benefits of estrogen (12)(13)(14). Recent evidence suggests that the direct actions of estrogen on blood vessels contribute to the cardioprotective effects of estrogen (13, 15). There are many kinds of direct effects of estrogen on blood vessels, such as estrogen-induced increases of vasodilatation and inhibition of the response of blood vessels to injury and the development of atherosclerosis. However, the molecular mechanism underlying the estrogeninduced vasodilatation has not yet been determined. Several studies suggest that a key mediator of this vasodilator response could be the endothelium-derived relaxing factor nitric oxide (NO), and that brief treatment with estrogen increases basal NO release in endothelial cells without elevation of eNOS mRNA or protein (16). Estrogen activates endothelial nitric oxide synthase (eNOS) without altering expression of the eNOS gene in vascular endothelium (17)(18)(19)(20). However, the details of the mechanism of the estrogen-induced eNOS activation are not yet well understood.The serine/threonine kinase termed Akt or protein kinase B (PKB) 1 is an important regulator of various cellular processes, including glucose metabolism and cell survival (21, 22). Activation of receptor tyrosine kinases and G-protein-coupled receptors, and stimulation of cells by mechanical force, can lead to the phosphorylation and activation of . Akt was identified as a downstream component of survival signaling through phosphatidylinositol 3-kinase (PI3K) (26 -30). Akt may be regulated by both phosphorylation and the direct binding of PI3K lipid products to the Akt pleckstrin homology domain. Akt can then phosphorylate substrates such as glycogen synthase kinase-3, 6-phosphofructo-2-kinase, and BAD. More recently, it was found that eNOS is also an Akt substrate and is activated by Akt-dependent phosphorylation to release NO in endothelial cells (31-34).The actions of estrogen can be mediated by the classical nuclear receptors, ER␣ and ER (35,36) or through other putative membrane receptors. By definition, rapid effects of estrogen that involve nongenomic mechanisms are independent of transcriptional activation by the nuclea...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.