The Compact Linear Collider (CLIC) is an option for a future collider operating at centre-of-mass energies up to , providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: , 1.4 and . The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung () and -fusion (), resulting in precise measurements of the production cross sections, the Higgs total decay width , and model-independent determinations of the Higgs couplings. Operation at provides high-statistics samples of Higgs bosons produced through -fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes and allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.
Two special calorimeters are foreseen for the instrumentation of the very forward region of the ILC detector, a luminometer designed to measure the rate of low angle Bhabha scattering events with a precision better than 10 −3 and a low polar angle calorimeter, adjacent to the beam-pipe. The latter will be hit by a large amount of beamstrahlung remnants. The amount and shape of these depositions will allow a fast luminosity estimate and the determination of beam parameters. The sensors of this calorimeter must be radiation hard. Both devices will improve the hermeticity of the detector in the search for new particles. Finely segmented and very compact calorimeters will match the requirements. Due to the high occupancy fast front-end electronics is needed. The design of the calorimeters developed and optimised with Monte Carlo simulations is presented. Sensors and readout electronics ASICs have been designed and prototypes are available. Results on the performance of these major components are summarised.
A compact and finely grained sandwich calorimeter is designed to instrument the very forward region of a detector at a future e + e − collider. The calorimeter will be exposed to low energy e + e − pairs originating from beamstrahlung, resulting in absorbed doses of about one MGy per year. GaAs pad sensors interleaved with tungsten absorber plates are considered as an option for this calorimeter. Several Cr-doped GaAs sensor prototypes were produced and irradiated with 8.5-10 MeV electrons up to a dose of 1.5 MGy. The sensor performance was measured as a function of the absorbed dose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.