The reliability of wave prediction is a crucial issue in coastal, harbor and ocean engineering. Support vector machine (SVM) is an appropriate and suitable method for significant wave height (Hs) prediction due to its best versatility, robustness, and effectiveness. In this present work, only significant wave height (Hs) of previous time steps were used as predictors during the period 01-01-2004 to 01-04-2004. The data used is processed significant wave height (Hs) of the station SW4(Latitude 12056′31″ and longitude 74043′58″) located near west coast of India.70% of the data used for calibration of model parameters and remaining 30% data used for validation using various input combinations. The performance of both the RBF and PUK models is assessed using different statistical indices. (E.g. CC (RBF-SVR) = 0.82, CC (PUK-SVR) = 0.93; MAE (RBF-SVR) = 0.04, MAE (PUK-SVR) =0.04 RMSE (RBF-SVR) =0.06, RMSE (PUK-SVR) =0.05.The results show that SVM can be successfully used for prediction of Hs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.