The decay of excited states in the waiting-point nucleus 130 Cd 82 has been observed for the first time. An 8 two-quasiparticle isomer has been populated both in the fragmentation of a 136 Xe beam as well as in projectile fission of 238 U, making 130 Cd the most neutron-rich N 82 isotone for which information about excited states is available. The results, interpreted using state-of-the-art nuclear shell-model calculations, show no evidence of an N 82 shell quenching at Z 48. They allow us to follow nuclear isomerism throughout a full major neutron shell from 98 Cd 50 to 130 Cd 82 and reveal, in comparison with 76 Ni 48 one major proton shell below, an apparently abnormal scaling of nuclear two-body interactions. DOI: 10.1103/PhysRevLett.99.132501 PACS numbers: 21.60.Cs, 23.20.Lv, 26.30.+k, 27.60.+j The pioneering work of Goeppert-Mayer [1] and Haxel, Jensen, and Suess [2] in realizing that the experimental evidence for nuclear magic numbers could be explained by assuming a strong spin-orbit interaction constituted a major milestone in our understanding of the internal structure of the atomic nucleus. However, it has been recognized for more than 20 years that the single-particle ordering which underlies the shell structure (and with it the magic numbers) may change for nuclei approaching the neutron dripline. It has been argued that the neutron excess causes the central potential to become diffuse, leading to a modification of the single-particle spectrum of neutron-dripline nuclei [3,4]. In addition, a strong interaction between the energetically bound orbitals and the continuum also affects the level ordering. The consequence of these modifications can be a shell quenching; i.e., the shell gaps at magic neutron numbers are less pronounced in very neutronrich nuclei than in nuclei closer to stability. At the extreme, these gaps may even disappear. Alternatively, the tensor part of the nuclear force has been shown to cause shell reordering for very asymmetric proton and neutron numbers [5,6].The N 82 isotones below the doubly magic nucleus 132 Sn are crucial for stellar nucleosynthesis due to the close relation between the N 82 shell closure and the A 130 peak of the solar r-process abundance distribution. Based on the mass models available at that time, it was shown in the 1990s that the assumption of a quenching of the N 82 neutron shell closure leads to a considerable improvement in the global abundance fit in r-process calculations [7,8], in particular, a filling of the troughs around A 120 and 140. On the other hand, recently, alternative descriptions of the phenomenon have been given without invoking shell quenching at all [9,10]. Unfortunately, the very PRL 99,
3The general phenomenon of shell structure in atomic nuclei has been understood since the pioneering work of Goeppert-Mayer, Haxel, Jensen and Suess [1].They realized that the experimental evidence for nuclear magic numbers could be explained by introducing a strong spin-orbit interaction in the nuclear shell model potential.However, our detailed knowledge of nuclear forces and the mechanisms governing the structure of nuclei, in particular far from stability, is still incomplete. In nuclei with equal neutron and proton numbers (N = Z), the unique nature of the atomic nucleus as an object composed of two distinct types of fermions can be expressed as enhanced correlations arising between neutrons and protons occupying orbitals with the same quantum numbers. Such correlations have been predicted to favor a new type of nuclear superfluidity; isoscalar neutron-proton pairing [2][3][4][5][6], in addition to normal isovector pairing (see Fig. 1). Despite many experimental efforts these predictions have not been confirmed. Here, we report on the first observation of excited states in N = Z = 46 nucleus 92 Pd. Gamma rays emitted following the 58 Ni( 36 Ar,2n) 92 Pd fusionevaporation reaction were identified using a combination of state-of-the-art highresolution -ray, charged-particle and neutron detector systems. Our results reveal evidence for a spin-aligned, isoscalar neutronproton coupling scheme, different from the previous prediction [2][3][4][5][6]. We suggest that this coupling scheme replaces normal superfluidity (characterized by seniority coupling [7,8]) in the ground and low-lying excited states of the heaviest N = Z nuclei. The strong isoscalar neutron-proton correlations in these N = Z nuclei are predicted to have a considerable impact on their level structures, and to influence the dynamics of the stellar rapid proton capture nucleosynthesis process.For all known nuclei, including those residing along the N = Z line up to around mass 80, a detailed analysis of their properties such as binding energies [9] and the spectroscopy of the excited states [10] strongly suggests that normal isovector (T = 1) pairing is dominant at low excitation energies. On the other hand, there are long standing predictions for a change in the heavier N = Z nuclei from a nuclear superfluid dominated by isovector pairing to a structure where isoscalar (T = 0) neutron-proton (np) pairing has a major influence as the mass number increases towards the exotic doubly magic nucleus 100 Sn [2-6], the heaviest N = Z nucleus to be bound. N = Z nuclei with mass number > 90 can only be produced in the laboratory with very low The two-neutron (2n) evaporation reaction channel following formation of the 94 Pd compound nucleus, leading to 92 Pd, was very weakly populated with a relative yield of less than 10 −5 of the total fusion cross section. Gamma rays from decays of excited states in 92 Pd were identified by comparing γ-ray spectra in coincidence with two emitted neutrons and no charged particles with γ-ray spectra in coincidence with oth...
The neutron-deficient nucleus 199 At has been studied through γ -ray and electron spectroscopy, using the recoil-decay tagging technique. Two experiments were conducted, using a gas-filled recoil separator with a focal-plane spectrometer alone and together with a germanium-detector array at the target position. The resulting level scheme for 199 At includes a new isomer with a half-life of 0.80(5) µs and a spin and parity of (29/2 + ). The 13/2 + isomer, which de-excites via an M2 transition to the 9/2 − ground state, was measured to have a half-life of 70(20) ns. Our earlier version of the level scheme for 197 At has been updated as well.
Isomeric states in the semimagic [128][129][130] Sn isotopes were populated in the fragmentation of a 136 Xe beam on a 9 Be target at an energy of 750 A·MeV. The decay of an isomeric state in 128 Sn at an excitation energy of 4098 keV has been observed. Its half live has been determined to be T 1/2 = 220(30) ns from the time distributions of the delayed γ rays emitted in its decay. γ γ coincidence relations were analyzed in order to establish the decay pattern of the newly established state toward the known (7 − ) and (10 + ) isomers at excitation energies of 2092 and 2492 keV, respectively. Based on a comparison with results of state-of-the-art shell-model calculations the new isomeric state is proposed to have the νh
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.