Designing a versatile and rational method for the tactical tuning of the surface and interfacial properties of graphene is an essential yet challenging task of many scientific areas including health care, sensors, energy, and the environment. A method was designed herein to tackle the challenge and tune the surface and interfacial properties of graphene using a simple electrochemical tethering of arylamines that provides diverse reactive end groups to graphene. This method resulted in the preparation of graphenes with thiol, hydroxy, amine, carboxyl, and sulfonate surface functionalities respectively. X-ray photoelectron spectroscopy, scanning electron microscopy, and cyclic voltammetry were used to study the chemical, morphological, and electrochemical properties of the modified graphenes. The results show the promising scope of the reported method towards the tactical tuning of the surface and interfacial properties of graphene. Also, this method can give fundamental insights of the surface tuning of graphene and its structurally similar materials. Hence, this approach can be used to advantageously tune the surface properties of the other structurally similar nanocarbons and their hybrid materials to make them potential candidates for many applications.
The dual enzyme mimicry (peroxidase/catalase-like activities) exhibited by ITO nanocubes (ITO NCs) was investigated by spectrophotometric and electrochemical methods. The peroxidase mimic was successfully applied for the electrochemical detection of H2O2 and spectrophotometric biosensing of glucose. Further, the detection could be extended to the detection of glucose in real samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.