Abstract:The first and second laws of thermodynamics were applied to biochemical reactions typical of human metabolism. An open-system model was used for a human body. Energy conservation, availability and entropy balances were performed to obtain the entropy generated for the main food components. Quantitative results for entropy generation were obtained as a function of age using the databases from the U.S. Food and Nutrition Board (FNB) and Centers for Disease Control and Prevention (CDC), which provide energy requirements and food intake composition as a function of age, weight and stature. Numerical integration was performed through human lifespan for different levels of physical activity. Results were presented and analyzed. Entropy generated over the lifespan of average individuals (natural death) was found to be 11,404 kJ/ºK per kg of body mass with a rate of generation three times higher on infants than on the elderly. The entropy generated predicts a life span of 73.78 and 81.61 years for the average U.S. male and female individuals respectively, which are values that closely match the average lifespan from statistics (74.63 and 80.36 years). From the analysis of the effect of different activity levels, it is shown that entropy generated increases with physical activity, suggesting that exercise should be kept to a "healthy minimum" if entropy generation is to be minimized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.