Recent concern for human safety and environmental protection has rekindled interest in natural pigment sources. In comparison to synthetic pigments, microbial pigments show better biodegradability and environmental compatibility and are used in a variety of applications ranging from food to cosmetics. The areas of attention for economical pigment synthesis include the identification of novel microbiological sources and improvement of process parameters. The purpose of this research was to screen and identify microbial isolates capable of generating pigments with antimicrobial activity from a variety of soil samples. A total of six pigment-producing bacterial sps were able to isolate from various soil samples such as bore well digging sites, river shores, river beds, forest areas, dumping yards using the enrichment culture technique. All the isolates were morphologically and biochemically identified as Micrococcus sp producing two-color pigments i.e., yellow and orange, Serratia sp producing red and pink color pigments, Salinococcus sp producing orange color pigment, and Exiguobacterium sp producing yellow color pigment respectively. During optimization studies maximum pigment production was observed at pH 7, agitation at 90 rpm (rotations per minute) and 120 rpm, the temperature of 30°C and 37°C, inoculum size up to 2% with NaCl concentration of 2%, 4%, and 6% respectively. Optimization of nutritional parameters such as carbon source and nitrogen source it was found that glucose (1%) and yeast extract (0.1%) work the best. Extraction of the pigment from the fermented broth was done by solvent-solvent extraction method. UV-Visible spectrophotometry and Silica gel Thin-layer chromatography was used to detect the presence of carotene and prodigiosin in the extracted bacterial pigment. The crude bacterial pigments were tested for antimicrobial activity against clinical pathogens including E. coli, Klebsiella sp, Bacillus sp, Staphylococcus sp, and pseudomonas sp respectively. Among all the isolates, pigments of Micrococcus sp and Salinococcus sp showed comparatively good results. Further purification of the pigment will lead to discovering a promising drug in the pharmaceutical industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.