To maximize the formation of an anisotropic interface between the magnetostrictive phase and the electrostrictive phase, a eutectic BaTiO3-CoFe2O4 multiferroic material is fabricated by containerless processing. The composites in this process had a fine eutectic structure, especially at a eutectic composition of BaTiO3:CoFe2O4 = 62:38. TEM observations revealed that the (1 0 0) plane of tetragonal BaTiO3 and the (1 0 0) plane of CoFe2O4 were oriented in parallel. In addition to the largest magnetodielectric effect in the eutectic-composition samples, we confirmed the permittivity is controlled linearly by applying a high magnetic field through forced magnetostriction. So far, the peak of the magnetodielectric effect around 0.25 T has been only found in the sintered CoFe2O4 polycrystalline sample. Thus, the containerless processing provides us a route to produce an ideal microstructure without accompanying 90° domain wall process and rotational magnetization process, which enhances the magnetodielectric effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.