Objective: To formulate and characterize. Phenobarbital sodium loaded sublingual patch using biodegradable, mucoadhesive, fast-dissolving natural polymer pullulan for immediate management of epileptic seizures.
Methods: Phenobarbital sodium loaded sublingual patches were prepared by the solvent casting method and were subjected to various physicochemical evaluation parameters to find the optimized sublingual patch. The in vitro drug release study and kinetic model of the optimized formulation was also carried out. The stability study of the optimized Phenobarbital sodium loaded sublingual patch was also done.
Results: From in vitro drug release study, it was found that Phenobarbital sodium loaded sublingual patch (S4) exhibited a maximum drug release of 96.24±1.27% at the end of 60 min compared to other formulations indicating a faster drug release from the formulation with release kinetics as Higuchi diffusion model. In fact, a notable release data was obtained between 0.5 to 8 min by all formulations, specifically S4 formulation (20.84±1.97% and 77.22±2.41% drug release at the end of 0.5 min and 8 min respectively) showed a better percentage release profile in comparison with other formulations. Such a trend is vital to deliver the drug at a faster rate to promote immediate effect for managing the fatal and complicated seizure. Considering the physicochemical property and in vitro drug release data, S4 formulation was regarded as an optimized one. The stability study also confirmed that S4 formulation is stable at refrigeration conditions.
Conclusion: The formulated Phenobarbital sodium loaded sublingual patch is an effective drug delivery carrier which enables faster drug release to manage epileptic seizure.
Pharmaceutical research has developed various new types of innovative forms of drug delivery. Advancement in current drug delivery methods has led to the development of numerous new revolutionary technologies that support safe and efficient formulations over existing ones. Novasome technology is one of the latest liposome developments that have overcome many of the liposomal drug delivery system-related problems. This provides a seven bilayer membrane which is capable of absorbing water-soluble as well as insoluble drugs. The improved efficiency of entrapping drugs with good encapsulation features enables better frequency of dosing, which can be accomplished through the high shear system. These find their applications in diverse fields such as cosmetics, chemicals, personal care, food, pharmacy, and agrochemicals. Several products have already been launched into the market using this technology with an additional launch plan. Due to its depth of penetration, novasomes have been one of the most popular derma cosmetics. It is being studied continuously to obtain improved release characteristics. The prospect of drug delivery and targeting using novasomes is an important area of research and development. This review pinpoints the various aspect of the novasome and will be a milestone for the researchers in the area of drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.