A power-balance model, with radiation losses from impurities and neutrals, gives a unified description of the density limit (DL) of the stellarator, the L-mode tokamak, and the reversed field pinch (RFP). The model predicts a Sudo-like scaling for the stellarator, a Greenwald-like scaling, , for the RFP and the ohmic tokamak, a mixed scaling, , for the additionally heated L-mode tokamak. In a previous paper (Zanca et al 2017 Nucl. Fusion 57 056010) the model was compared with ohmic tokamak, RFP and stellarator experiments. Here, we address the issue of the DL dependence on heating power in the L-mode tokamak. Experimental data from high-density disrupted L-mode discharges performed at JET, as well as in other machines, are taken as a term of comparison. The model fits the observed maximum densities better than the pure Greenwald limit.
The 2014–2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L–H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent measurements of fine-scale structures in the edge radial electric. Dimensionless scans of the core and pedestal confinement provide new information to elucidate the importance of the first wall material on the fusion performance. H-mode plasmas at ITER triangularity (H = 1 at βN ~ 1.8 and n/nGW ~ 0.6) have been sustained at 2 MA during 5 s. The ITER neutronics codes have been validated on high performance experiments. Prospects for the coming D–T campaign and 14 MeV neutron calibration strategy are reviewed.
We have analyzed the yearly averaged sidereal daily variations in the count rates of 46 underground muon telescopes by fitting Gaussian functions to the data. These functions represent the loss cone and tail‐in anisotropies of the sidereal anisotropies model proposed by Nagashima et al. [l995a, b]. The underground muon telescopes cover the median rigidity range 143–1400 GV and the viewing latitude range 73°N–76°S. From the Gaussian amplitudes and positions we have confirmed that the tail‐in anisotropy is more prominent in the southern hemisphere with its reference axis located at declination (δ) ∼14°S and right ascension (α) ∼4.7 sidereal hours. The tail‐in anisotropy is asymmetric about its reference axis, and the observed time of maximum intensity depends on the viewing latitude of the underground muon telescopes. We also find that the declination of the reference axis may be related to the rigidity of the cosmic rays. We show that the loss cone anisotropy is symmetric and has a reference axis located on the celestial equator (δ ∼ 0°) and α ∼ 13 sidereal hours. We have used the parameters of the Gaussian fits to devise an empirical model of the sidereal anisotropies. The model implies that the above characteristics of the anisotropies can explain the observed north‐south asymmetry in the amplitude of the sidereal diurnal variation. Furthermore, we find that the anisotropies should cause the phase of the sidereal semidiurnal variation of cosmic rays to be observed at later times from the northern hemisphere compared to observations from the southern hemisphere. We present these results and discuss them in relation to current models of the heliosphere.
Results are presented of cosmic ray measurements taken at sea level during 1954–55 from the Arctic to the Antarctic. The equipment consisted of a neutron monitor and a meson telescope. Latitude effects of 1.77 for the nucleonic component and 1.15 for the meson component were measured. The longitude effect at the equator was much less than expected on the basis of the geomagnetic eccentric dipole and the longitude effect at intermediate northern latitudes shows that the longitude of the effective eccentric dipole is considerably west of that of the geomagnetic eccentric dipole. In a previous paper by the same authors, the positions of the equatorial minima were combined with other published cosmic ray measurements to calculate a new cosmic ray geomagnetic equator. In this paper new coordinates are derived on the assumption that these equatorial coordinates apply to a new eccentric dipole, and, therefore, that the equatorial coordinates may be extended to high latitudes. When the complete results are plotted on these coordinates, it is found that an eccentric dipole representation of the earth's magnetic field is inconsistent with the combined observations at all latitudes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.