The isoflavone compositions and concentrations in the leaf, flower, petiole, and stem of 13 red clover cultivars were studied using high-performance liquid chromatography coupled with a diode array and a mass spectrometric detector with negative electrospray ionization. Different cultivars showed significantly different concentrations of individual and total isoflavones. The leaf contained the highest overall concentration, followed by the stem, petiole, and flower. Biochanin A and formononetin were the predominant isoflavones in all cultivars and all parts, along with eight other minor aglycones, daidzein, genistein, glycitein, irilone, orobol, pratensein, pseudobaptigenin, and prunetin, and four minor malonylglycosides, genistein-7-glucoside-6' '-malonate, orobol-7-glucoside-6' '-malonate, formononetin-7-glucoside-6' '-malonate, and biochanin A-7-glucoside-6' '-malonate. The isoflavone compositions and concentrations were also found to be different between red clover parts harvested at the early bud stage and the late flowering stage. Sample storage and handling prior to analysis were also found to be important. Samples in this study were kept at -5 degrees C for a few days before being freeze-dried and were found to contain mainly the aglycones of isoflavones. This may actually be an advantage in that "natural" and more bioactive isoflavones can be obtained without using chemical hydrolysis. Findings in this study therefore provide important information for developing isoflavone-rich red clovers and for optimizing harvest timing and choosing the right part of the red clover plant.
Two feeding trials were conducted with pigs to determine the effects of blueberry supplementation on plasma lipid levels and other indices of cardiovascular benefit. In the first trial, where basal diets contained a high level of plant-based components (70 % soya, oats and barley), supplementation with 1, 2 and 4 % blueberries resulted in a decrease in total, LDL-and HDL-cholesterol. The greatest reduction was observed in the 2 % blueberry-fed pigs, where total, LDL-and HDL-cholesterol were reduced 11·7, 15·1 and 8·3 %, respectively. In the second trial where basal diets contained only 20 % (w/w) of soya, oats and barley, the lipid-modulating effect of blueberries was attenuated, so that supplementation with 1·5 % blueberries reduced total cholesterol by 8 %, which occurred only in pigs whose diets had been supplemented with cholesterol (0·08 %), NaCl (0·11 %) and fructose (9 %). In the first feeding trial, blueberry supplementation had no effect on blood platelet activity. Blueberry supplementation also had no effect on the susceptibility of leucocyte DNA to oxidation in the first trial and no effect on the susceptibility of LDL to oxidation in the second trial. Results of these two feeding trials are discussed in relation to the effects of basal diet composition on lipid-modulating effects of blueberries.
Botrytis cinerea and Sclerotinia sclerotiorum are fungal pathogens that cause the decay of many fruits and vegetables. Ozone may be used as an antimicrobial agent to control the decay. The effect of gaseous ozone on spore viability of B. cinerea and mycelial growth of B. cinerea and S. sclerotiorum were investigated. Spore viability of B. cinerea was reduced by over 99.5% (P < 0.01) and height of the aerial mycelium was reduced from 4.7 mm in the control to less than 1 mm after exposure to 450 or 600 ppb ozone for 48 h at 20 degrees C. Sporulation of B. cinerea was also substantially inhibited by ozone treatments. However, ozone had no significant effect on mycelial growth of S. sclerotiorum in vitro. Decay and quality parameters including color, chlorophyll fluorescence (CF), and ozone injury were further assessed for various horticultural commodities (apple, grape, highbush blueberry, and carrot) treated with 450 ppb of ozone for 48 h at 20 degrees C over a period of 12 d. Lesion size and height of the aerial mycelium were significantly reduced by the ozone treatment on carrots inoculated with mycelial agar plugs of B. cinerea or S. sclerotiorum. Lesion size was also reduced on treated apples inoculated with 5 x 10(6) spores/mL of B. cinerea, and decay incidence of treated grapes was reduced. The 450 ppb ozone for 48 h treatment had no significant effect on color of carrots and apples or on CF of apples and grapes. Ozone, an environmentally sound antimicrobial agent, inactivates microorganisms through oxidization and residual ozone spontaneously decomposes to nontoxic products. It may be applied to fruits and vegetables to reduce decay and extend shelf life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.