The article discusses the results of mathematical and experimental simulation of the impact of atomic oxygen of the Earth's upper atmosphere on carbon and boron nitride nanotubes, graphene, hexagonal boron nitride sheets, and graphene nanoribbons, as well as composites based on polymer matrices with fillers in the form of nanosized particles of various types.
Polyimide thin films both unmodified and modified with hyperbranched polyethoxysiloxane were treated with accelerated oxygen plasma flow to imitate a low Earth orbit environment. The resulting changes in the surface morphology were studied using scanning electron microscopy. The erosion yield values were calculated and the relative stability of the tested samples was established. It was shown that the polyimidepolyethoxysiloxane composites have higher atomic oxygen resistance owing to, presumably, the siloxane par ticles dispersed uniformly in the polyimide matrix. The study found that all plasma treated samples exhibit the same fibrous, carpet like surface morphology with some minor variations caused by differences in the chemical composition of polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.