ABSTRACT:As Building Information Modelling (BIM) thrives, geometry becomes no longer sufficient; an ever increasing variety of semantic information is needed to express an indoor model adequately. On the other hand, for the existing buildings, automatically generating semantically enriched BIM from point cloud data is in its infancy. The previous research to enhance the semantic content rely on frameworks in which some specific rules and/or features that are hand coded by specialists. These methods immanently lack generalization and easily break in different circumstances. On this account, a generalized framework is urgently needed to automatically and accurately generate semantic information. Therefore we propose to employ deep learning techniques for the semantic segmentation of point clouds into meaningful parts. More specifically, we build a volumetric data representation in order to efficiently generate the high number of training samples needed to initiate a convolutional neural network architecture. The feedforward propagation is used in such a way to perform the classification in voxel level for achieving semantic segmentation. The method is tested both for a mobile laser scanner point cloud, and a larger scale synthetically generated data. We also demonstrate a case study, in which our method can be effectively used to leverage the extraction of planar surfaces in challenging cluttered indoor environments.
ABSTRACT:During the last years, the demand for indoor models has increased for various purposes. As a provisional step to proceed towards higher dimensional indoor models, powerful and flexible floor plans can be utilised. Therefore, several methods have been proposed that provide automatically generated floor plans from laser point clouds. The prevailing methodology seeks to attain semantic enhancement of a model (e.g. the identification and labelling of its components) built upon already reconstructed (a priori) geometry. In contrast, this paper demonstrates preliminary research on the possibility to directly incorporate semantic knowledge, which is itself derived from the raw data during the extraction, into the geometric modelling process. In this regard, we propose a new method to automatically extract floor plans from raw point clouds. It is based on a hierarchical space partitioning of the data, integrated with primitive selection actuated by object detection. First, planar primitives corresponding to vertical architectural structures are extracted using M-estimator SAmple and Consensus (MSAC). The set of the resulting line segments are refined by a selection process through a novel door detection algorithm, considering optimization of prior information and fitness to the data. The selected lines are used as hyperlines to partition the space into enclosed areas. Finally, a floor plan is extracted from these partitions by Minimum Description Length (MDL) hypothesis ranking. The algorithm is applied on a real mobile laser scanner dataset and the results are evaluated both in terms of door detection and consecutive floor plan extraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.