The Oxley Creek wastewater treatment plant is a conventional 185,000 EP BOD removal activated sludge plant that is to be upgraded for nitrogen removal to protect its receiving water bodies, the Brisbane River and Moreton Bay. Suspended carrier technology is one possible way of upgrading this activated sludge wastewater treatment plant for nitrogen removal. Freely moving plastic media is added to the aeration zone, providing a growth platform for nitrifying bacteria and increasing the effective solids residence time (SRT). This paper presents the results from operating a pilot plant for 7 months at the Oxley Creek WWTP in Brisbane, Australia. Natrix Major 12/12 plastic media, developed by ANOX (Lund, Sweden), was trialed in the pilot plant. The pilot plant was operated with a mixed liquor suspended solids concentration of 1220 mg/L and a total hydraulic residence time of 5.4 hours, similar to the operating conditions in the full-scale Stage 1&2 works at the Oxley Creek WWTP. The plastic carriers were suspended in the last third of the bioreactor volume, which was aerated to a DO setpoint of 4.0 mg/L. The first third of the bioreactor volume was made anoxic and the second third served for carbon removal, being aerated to a DO setpoint of 0.5 mg/L. The results from the pilot plant indicate that an average effluent total inorganic nitrogen concentration (ammonia-N plus NOx−N) of less than 12 mg/L is possible. However, the effluent ammonia concentrations from the pilot plant showed large weekly fluctuations due to the intermittent operation of the sludge dewatering centrifuge returning significant ammonia loads to the plant on three days of the week. Optimising denitrification was carried out by lowering the DO concentration in the influent and in the carbon removal reactor. The results from the pilot plant study show that the Oxley Creek WWTP could be upgraded for nitrogen removal without additional tankage, using suspended carrier technology.
Return side streams from anaerobic digesters and dewatering facilities at wastewater treatment plants (WWTPs) contribute a significant proportion of the total nitrogen load on a mainstream process. Similarly, significant phosphate loads are also recirculated in biological nutrient removal (BNR) wastewater treatment plants. Ion exchange using a new material, known by the name MesoLite, shows strong potential for the removal of ammonia from these side streams and an opportunity to concurrently reduce phosphate levels. A pilot plant was designed and operated for several months on an ammonia rich centrate from a dewatering centrifuge at the Oxley Creek WWTP, Brisbane, Australia. The system operated with a detention time in the order of one hour and was operated for between 12 and 24 hours prior to regeneration with a sodium rich solution. The same pilot plant was used to demonstrate removal of phosphate from an abattoir wastewater stream at similar flow rates. Using MesoLite materials, >90% reduction of ammonia was achieved in the centrate side stream. A full-scale process would reduce the total nitrogen load at the Oxley Creek WWTP by at least 18%. This reduction in nitrogen load consequently improves the TKN/COD ratio of the influent and enhances the nitrogen removal performance of the biological nutrient removal process.
This paper presents the use of the IWA ADM1 to predict and interpret results from two full-scale anaerobic digesters fed with thermal hyrolysate (waste activated sludge with a long upstream sludge age) from a Cambi hydrolysis process operating at 165°C and 6 bar-g. The first digester was fed conventionally-though intermittently, while the second was heavily diluted through a substantial component of the evaluation period (110 days). There were a number of important outcomes-related to both model application, and model predictions. Input and inert COD: mass ratio was very important, and was considerably higher than the 1.42 g g⁻¹ used for biomass throughout the IWA activated sludge and anaerobic digestion models. Input COD: VS ratio was 1.6 g g⁻¹, and inert COD: VS ratio was 1.7 g g⁻¹. The model succeeded on a number of levels, including effective prediction of important outputs (degradability, gas flow and composition, and final solids), clarification of the substantial data scatter, prediction of recovery times during operationally poor periods, and cross-validation of the results between digester 1 and digester 2. Key failures in model performance were related to an early incorrect assumption of the COD: VS ratio of 1.42 g g⁻¹, and intermittent high acetate levels, most likely caused by inhibition, and rapid acclimatisation to ammonia. The acute free ammonia limit was found to be 0.008 M NH(3)-N, while the chronic inhibition constant (K(I,NH₃,ac)) was 0.007 ± 0.001 M NH₃-N. Overall, this is a complex system, and application of the model added significant confidence to the initial operational decisions during an aggressive startup on an atypical feed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.