We propose DAvinCi, a software framework that provides the scalability and parallelism advantages of cloud computing for service robots in large environments. We have implemented such a system around the Hadoop cluster with ROS (Robotic Operating system) as the messaging framework for our robotic ecosystem. We explore the possibilities of parallelizing some of the robotics algorithms as Map/Reduce tasks in Hadoop. We implemented the FastSLAM algorithm in Map/Reduce and show how significant performance gains in execution times to build a map of a large area can be achieved with even a very small eight-node Hadoop cluster. The global map can later be shared with other robots introduced in the environment via a Software as a Service (SaaS) Model. This reduces the burden of exploration and map building for the new robot and minimizes it's need for additional sensors. Our primary goal is to develop a cloud computing environment which provides a compute cluster built with commodity hardware exposing a suite of robotic algorithms as a SaaS and share data co-operatively across the robotic ecosystem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.